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abstract

We construct two possible metrics for abelian Higgs vortices with ends on black

holes. We show how the detail of the vortex �elds smooths out the nodal singularities

which exist in the idealized metrics. A corollary is that apparently topologically stable

strings might be able to split by black hole pair production. We estimate the rate per

unit length by reference to related Ernst and C-metric instantons, concluding that it

is completely negligible for GUT-scale strings. The estimated rate for macroscopic

superstrings is much higher, although still extremely small, unless there is an early

phase of strong coupling.
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One of the basic tenets on which the cosmic string scenario [1-3] of galaxy formation

rests is that the only way strings decay is via gravitational or particle radiation. The

(straight) Nielsen-Olesen vortex [4] has been taken to be stable, protected by the topol-

ogy of the vacuum manifold of the underlying Abelian Higgs model. Such topological

arguments have been assumed to be true even when gravity is included. While Nielsen-

Olesen vortices seem to be stable to small perturbations in Einstein Abelian Higgs [5],

their stability against non-perturbative processes has not been con�rmed.

Several recent papers have examined cosmic strings splitting under various conditions

[6-8], but only [8] actually considered the splitting of a Nielsen-Olesen vortex. If true,

these results might have far reaching consequences for any large scale application of cosmic

strings if the decay rate is appreciable. All of these arguments use metrics with conical

de�cits to �nd an instanton for decay and assume the conical de�cit can be smoothed out

and replaced by a cosmic string. If a real vortex is to split it is crucial to show that a real

vortex can be woven into these metrics, smoothly rounding o� the conical de�cit.

Evidence for the validity of replacing a conical de�cit with a vortex was presented in

[9], where it was shown that the metric of Aryal Ford and Vilenkin (AFV) [10], a black

hole pierced by a conical de�cit, could be considered as the thin string limit of a vortex

piercing a black hole. The main di�erence between the AFV metric and the C-metrics, [11],

used in [6-8] is that the latter represents a non-static process. From the technical point of

view, the main di�erence is that in the one case (AFV) we have an almost cylindrically

symmetric situation, whereas in the latter case, and also in the case of black holes in static

equilibrium, there is an asymmetry of the system in that the string locally terminates on

the event horizon. The string core no longer corresponds to \r = 0" in an axial coordinate

system, but only \r = 0; z > z0". Thus, although the results of [9] were suggestive, they

were by no means conclusive.

In this paper we demonstrate that the assumptions of [6-8] are justi�ed, in the sense

that we show how to replace the conical singularity of both the uncharged C-metric, as

well as a static metric of a string with ends, with an abelian Higgs vortex. We will

show that provided the mass of the black holes involved is su�ciently large, the Nielsen-

Olesen solution can be used to approximate the �eld con�guration, and the gravitational
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e�ect of the string will be shown to smooth out the conical singularity into a `snub-nosed

cone' [5]. A consequence of this is that Nielsen-Olesen vortices need not be stable to

non-perturbative topology changing processes, and that strings might indeed `split'.

We �rst consider the Nielsen-Olesen vortex and discuss the metrics on which it is

supposed to sit. We then show how it smooths out any conical de�cit by calculating the

back reaction of the vortex on the geometry. After these more detailed considerations,

we discuss some of the implications. One is that topologically stable strings can break as

indicated in [8] by the nucleation of a pair of black holes, as the euclideanised version of

the smoothed C-metric should represent an instanton by which a straight string can tunnel

to the lorentzian con�guration of black holes on Nielsen-Olesen vortices. The tunneling

rate can be estimated to be proportional to exp(��m2=�), where m is the mass of the

black holes and � the string tension. We point out that as far as strings at the Grand

Uni�cation scale are concerned, the tunneling rate is greatest for instantons where the

black hole radius 2m is much smaller than the thickness of the string � ��1=2, and so

the process of splitting is really described by a di�erent metric, which should resemble the

Ernst [12] metric in the vicinity of the black holes. We estimate the rate, and �nd it still to

be negligibly small for Grand Uni�ed scale strings, but of possible signi�cance for cosmic

superstrings [13], whose string tension is much higher. There is even the possibility of

creating a population of primordial black holes, if the Universe ever went through a period

where there was a signi�cant population of macroscopic fundamental strings.

When Nielsen-Olesen strings were �rst conceived, they were meant to be a realisation

of the Nambu action, which allows for both closed and open strings. The open strings

would have to satisfy certain boundary conditions, namely that the ends travel at the

speed of light. The reason that Nielsen-Olesen vortices were assumed not to have ends is

associated with the topology of the vacuum manifold. For future reference, the abelian

Higgs lagrangian is

L[�; A�] = D��
yD��� 1

4
F��F

�� � �

4
(�y�� �2)2; (1)

where � is a complex scalar �eld, D� = r�� ieA� is the usual gauge covariant derivative,

and F�� the �eld strength associated with A�. We are using Planck units in which G =
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�h = c = 1 and a mostly minus signature. The vacuum manifold is j�j = �, and therefore

is a circle in the complex plane. The Nielsen-Olesen vortex takes the form

� = �X0(r)e
i� ; ; A� = A0(r)r��; (2)

in cylindrical polar coordinates. Now, note that

I
A�dx

� = 2�A0(r)! 2�

e
outside the core (3)

where the line integral is taken to be at constant r. More generally, (i.e., if we are not in


at space, or do not have a straight string) the presence of a vortex is indicated by the

existence of closed loops in space which lie totally in vacuo for which

I
A�dx

� =
2�N

e
; (4)

for some N 2 ZZ . Then, Stokes' theorem is used to deduce the existence of a 
ux tube

crossing any surface spanning the loop { and hence an in�nite or closed string.

How then can a string have ends? One way, of course, is to embed the abelian Higgs

model in a Yang-Mills-Higgs system with monopole solutions [1]. However, it was pointed

out in [8] and [9] that as far as the topology of the �elds is concerned, there is no obstruction

to terminating the string on a black hole. The abelian gauge potential has to be de�ned

in at least two patches on 2-spheres surrounding the black hole (just as in the Wu-Yang

construction for magnetic monopoles [14]), so Stokes' theorem has to be used with care.

The spacetime is not topologically trivial, (the particular measure here being here the

second cohomology class), therefore we cannot conclude that 
ux crosses every surface

spanning the loop { only those surfaces deformable to one known to contain a vortex.

Thus, depending on the actual spatial topology, it is quite possible for a string to leave a

neighbourhood and thus e�ectively terminate as far as a local observer is concerned.

Such a situation occurs in the other metrics considered by Aryal, Ford and Vilenkin,

namely the C-metrics [11] and a modi�cation of the static metrics considered by Israel and

Khan [15]. A C-metric is an axially symmetric solution to the Einstein equations which
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represents two black holes uniformly accelerating apart. The force for this acceleration is

provided either by a conical excess, a strut, between the holes, or alternatively by a conical

de�cit, a string, extending from each hole to in�nity (or of course a combination of the

two). The Israel-Khan metric represents two black holes held in equilibrium by a strut,

but can be readily modi�ed to have two strings extending to in�nity. The key observation

about these metrics is that the horizons of the two black holes can be identi�ed, forming

a wormhole in space [11,16]. The presence of this wormhole then provides a hole through

which the string can exit, thus it is not necessary to consider charged black holes and

topologically unstable strings, these uncharged metrics can directly `swallow' a Nielsen-

Olesen vortex. The basic idea then is to paint a vortex directly onto the metric, using the

core to smooth out the conical de�cit of the exact metric.

We will consider each metric in turn before showing that the Nielsen-Olesen vortex

can smooth out the conical de�cit. We will draw extensively on the formalism of [9] and

refer the reader there for calculational details. There, the question of using the vortex to

place hair on the black hole was considered, and it was shown that there was no obstruction

to having a vortex sit on the event horizon. In fact, if the thickness of the vortex is less

than the black hole radius (E =
p
��m > 1), the Nielsen-Olesen solution was shown to

be an excellent approximation to the string �elds and the vortex behaves almost as if the

event horizon were not there. The fact that the event horizon appears to cut the string

from an external observers point of view is readily explained by the open string boundary

conditions. Recall that a Nambu string can end provided it is travelling at the speed

of light. On the event horizon, the escape velocity is the speed of light, so a `stationary'

string sitting there is satisfying its appropriate boundary conditions. For E < 1, numerical

results showed that the string was still relatively una�ected by the black hole, although a

slight pinching of the string does occur.

We now show that for small �, and string width much less than the black hole radius

(E � 1), the Nielsen-Olesen solution solves the abelian Higgs equations. We will neglect

terms of order � since these correspond to the back reaction of the geometry on the abelian

Higgs equations, and can be accounted for via an iterative procedure.
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First consider the C-metric which takes the form

ds2 = A�2(x + y)�2[F (y)dt2 � F�1(y)dy2 �G(x)d�2=�2 �G�1(x)dx2]; (5)

where

G(x) = 1� x2 � 2mAx3;

F (y) = �1 + y2 � 2mAy3:
(6)

Here, m represents the mass of the black holes, and A their acceleration. The factor �

ensures that the axis between the black holes is regular, and � has periodicity 2�. In the


at space limit, A�1 represents half the distance of closest approach, so if this metric were

to represent a string splitting, we would expect

m ' �=A; (7)

where � is the mass per unit length of the string. Let us write x1 < x2 < x3 for the roots

of G. Then, in order to obtain the correct signature, we must have x2 < x < x3 and

�x2 < y < �x1. The coordinates cover only one patch of the full spacetime corresponding

to the exterior spacetime of one accelerating hole up to its acceleration horizon, which

is located at y = �x2. The coordinate singularity at y = �x1 corresponds to the event

horizon of the black hole. The conical de�cit sits along x = x2, while x = x3 points towards

the other black hole, which means that � = jG0(x3)j=2. The magnitude of the de�cit is

given by

�

2�
= 1�

����G0(x2)G0(x3)

���� = x3 � x2

x3 � x1
: (8)

Assuming mA � 1 in (6), the three roots fxig are given by f�1=2mA;�1; 1g so (8)

requires � = 8�mA. But � = 8�� for a string, hence � = mA in agreement with (7).

A more transparent form of the C-metric is obtained if we set

�t = A�1t ; r = 1=Ay ; and � =

Z x3

x

dx=
p
G (9)

when

ds2 = [1 +Arx(�)]�2
�
(1 � 2m

r
�A2r2)d�t2 � dr2

(1 � 2m
r
�A2r2)

� r2d�2 � r2Gd�2=�2
�
:

(10)
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This is almost conformally equivalent to the Kottler[18], or Schwarzschild de-Sitter metric

as might be expected from the acceleration horizon and clearly shows that we reduce to

the Schwarzschild metric in the limit A! 0.

In order to solve the abelian Higgs equations, we rewrite the gauge �eld as

A� =
1

e
(@��� P�): (11)

Using the expression (2) for �, the equations of motion are then

r�r�X � P�P
�X +

��2

2
X(X2 � 1) = 0; (12a)

r�F�� + 2e2�2X2P � = 0: (12b)

where F�� = @�P� � @�P� now. Noting that in a normal spherically symmetric metric X

is a function of r sin � =
p
g��, we try X = X0(R), P� = P0(R), where

R =

p
�G�r

�[1 +Arx(�)]
; (13)

in the neighbourhood of x = x2, the cosmic string.

Note that

r =
1

Ay
� � 1

Ax1
= 2m; (14)

and

r

1 +Axr
' 1

A(x2 + y)
>

1

A(x2 � x1)
=

2m

1� 2�
; (15)

hence
p
��r

[1 +Arx(�)]
> 2E � 1: (16)

We therefore are interested in examining the equations of motion over a range

p
G

�
� 1=2E � 1: (17)
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Thus

@X

@r
=

p
�G�

�[1 +Axr]2
X 0(R) =

p
��X 0(R) �O(E�1)

and
p
G
@X

@�
=

p
�G�r

�[1 +Axr]
X 0(R)

�
G0(x)

2
� ArG

(1 +Axr)

�
= RX 0(R)[1 +O(�E�2)]

(18)

Putting this form of X into the X-equation of motion yields

X 00[1 +O(�) +O(E�2)] +
X 0

R
[1 +O(�) +O(E�2)] +

XP 2

R2
+ 1

2
X(X2 � 1) = 0; (19)

which is indeed the Nielsen-Olesen equation for X to the required order. The equation for

P works similarly. Hence the Nielsen-Olesen vortex can be \painted" on to the C-metric,

in spite of its non-static nature.

Now consider the Israel-Khan metric which is given by

ds2 = e2 odt2 � e2(
o� o)(dr2 + dz2) � r2e�2 od�2; (20)

where, writing

� =
p
��z ; � =

p
��r

�1 = � � (L + 1
2
E) ; � 01 = � � (L � 1

2
E)

�2 = � + (L � 1
2
E) ; � 02 = � + (L + 1

2
E)

R2
1 = (�2 + �21 ) etc:

E(i; j) = RiRj + (�i�j + �2) ; E(i0; j) = RiRj + (� 0i�j + �2)

(21)

we have

 o =
1
2
log

�
R1 +R01 �E

R1 +R01 +E

� �
R2 +R02 �E
R2 +R02 +E

�
; (22)

and


o =
1

4
log

�
E(10; 1)2E(10; 2)2E(1; 20)2E(2; 20)2

E(1; 1)E(10; 10)E(1; 2)2E(10; 2)2E(2; 2)E(20; 20)

�
� log

4L2 �E2

4L2
; (23)
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where E =
p
��m� 1 represents (half) the black hole radius in multiples of string width

and L represents the separation of the black holes, also in units of string width. We can

directly �nd L given the energy per unit length of the string, since the conical de�cit for

� > L+ 1
2
E is

4� =
�

2�
= 1� e�
o(�=0) =

E2

4L2

) L =
E

4
p
�
� 1

(24)

Now consider the string extending from the upper black hole to in�nity. We are then

interested in a coordinate range � < �e� o � O(1) and � > L+ 1
2
E. Thus

R2 +R02 = 2(� + L) +O(�) +O(E�2) (25)

hence

R2 +R02 �E

R2 +R02 +E
= 1� E

� + L
+O(�) (26)

Denote this quantity by log 2. Then  2 = O(
p
�) and  2;z =

p
�� �O(�=E). Similarly,


 = 
sch + 
2 where 
2 is O(
p
�) and has a similarly suppressed variation. Thus the

e�ect of the second black hole is to multiply the Schwarzschild metric in the vicinity of

the string core by an extremely slowly varying factor. Therefore within the stated limits

of the approximation (E � 1) the metric is Schwarzschild up to non relevant factors, and

the results of [9] can be used to conclude that the vortex equations can be solved to the

required order by the Nielsen-Olesen solution.

Now we turn to the gravitational back reaction. For this we use the canonical form of

a general axisymmetric metric [19]

ds2 = e2 dt2 � e2(
� )(dz2 + dr2)� ~�2e�2 d�2: (27)

Note that although the Israel-Khan metric (20) is already in this form, the C-metric is

not. In order to make it so, one must perform the coordinate transformation

r =

p
FG

�A2(x + y)2
; z = � (1 + xy +mA(x3 + 2x2y � y3 � 2xy2))

�A2(x + y)2
(28)
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In which case the metric comes into the canonical form of equation (20) with

e2 o =
F

A2(x + y)2

e�2
o =
r2A4(x + y)4

F

"
F

�
F 0(y)

2F
� 2

(x + y)

�2

+G

�
G0(x)

2G
� 2

(x+ y)

�2
# (29)

Although this appears rather messy, the key facts are that it does have the canonical form,

and that

e�2
o(r=0) =
G0(x2)

2

4�2
=
G0(x2)

2

G0(x1)2
: (30)

Now, writing

� =
p
��r;

� =
p
��z;

� =
p
��~�:

(31)

the relevant Einstein equations from [9] are

�;�� + �;�� = ��
p�g(T̂ �� + T̂ �� ) (32a)

(� ;� );� + (� ;�);� =
1
2
�
p�g(T̂ 0

0 � T̂
�
� � T̂ �� � T̂

�
� ) (32b)


;�� + 
;�� = � 2
;� �  2

;� � �e2(
� )T̂
�
� (32c)

where � = 8��2 represents the gravitational strength of the string, and T̂ ab = T ab =��
4 is a

normalised energy momentum tensor which is of order unity. The combinations appearing

above were all shown to be functions of R = �e� o in [9]. The slight alteration of the

metric will not change this. The main di�erence between the current calculation and

the one presented in [9] is of course the asymmetry. In [9] the Einstein equations were

integrated out from r = 0 to obtain an asymptotically conical metric. Here we do not

expect a conical de�cit over the full range of �, therefore it is more appropriate to place

boundary conditions at the edge of the string rather than at its core. That is, we take the

metric perturbation to be non-zero only in the core.
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Writing the metric functions as


 = 
0 + �
1  =  0 + � 1 � = �(1 + ��1) (33)

we expect �1; 
1;  1 ! 0 outside the core. Solving the Einstein equations then gives

�1(R) = �
Z
1

R

1

R2

Z R

0

R2[T̂ 0
0 + T̂ �� ]dR

 1(R) = �1
2

Z
1

R

RT̂ �� = 1
2

1(R)

(34)

over the relevant ranges of �. Note that the perturbations fall to zero outside the core�,

leaving the background metric (Israel-Khan or C), but what of the interior metric? The

real issue is what happens as �! 0. Here there will be a nodal singularity if

� = 2�(1� �0(0)e�
(0)) = 2�(1 � (1 + ��1(0))(1 � �
1(0))e
�
o(0)) 6= 0: (35)

But

�1(0) � 
1(0) = �
Z
1

0

RT̂ 0
0 dR = 4�=� (36)

and in each case, the background metric was chosen to have a nodal singularity (see

equations (24) and (8)) of 8�� along this axis, i.e.,

1� e�
o(0) = 4�; (37)

hence � = 0 to order �. Thus the e�ect of the vortex is to smooth out the conical singularity

giving a regular metric with a snub-nosed cone which is schematically depicted in �gure 1.

We have therefore shown that the Nielsen-Olesen solution can be used to construct

regular metrics (in the sense of no nodal singularities) which represent vortices which

� Note however that �1 actually falls to zero as O(E
�1)=R [9]. Although this is outside

the scope of our present approximation, it is tempting to speculate that some relic of this

might remain when the calculation is continued to higher orders, and perhaps perturb the

gravitational radiation present in the C-metrics [11], rather similar to the way in which a

string in a FRW universe radiates C-energy as it preserves its proper radius [20].
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FIGURE (1): Pictorial representation of the geometry of the vortex terminat-

ing on the black hole.

end on black holes either in static equilibrium, or accelerating o� to in�nity. This latter

metric gives the appearance of a cosmic string being eaten up by accelerating black holes.

Whether or not such a process can be used to destabilize cosmic strings depends on the

action of the corresponding instanton obtained by euclideanising the C-metric. Note that

in a model with vortices, we no longer require equality of the periodicities of euclidean time

at the event and acceleration horizon [17], since we can always dress one or other horizon

with an appropriate virtual string worldsheet which can eat up any excess in periodicity

of imaginary time [21], just as the lorentzian string `eats up' the �-angle. Indeed, since we

are considering Einstein-abelian-Higgs a priori, constructing such Euclidean vortices[21] to

consume � -intervals in the black holes geometry is a natural procedure to undertake. It is

arguably preferable to leaving a conical de�cit there.

Euclideanizing (5) gives natural periodicities at the event and acceleration horizons of

�e =
4�

jG0(x1)j and �a =
4�

jG0(x2)j (38)

Combining this and equation (8) we can immediately see that demanding equality of these
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periodicities requires � = 1=4. Thus for small �, �e 6= �a. In fact

�e ' 16��2 � �a ' 4�� (39)

So it appears that it is the acceleration horizon that must be dressed if we wished to have

a completely regular Euclidean section. This would appear to imply that the action for

such a process is in�nite, however, since calculations of the euclidean action are delicate

[22], it would be premature to conclude that this must be the case.

With this caveat in mind, let us assume that the action is �nite, and estimate it.

The instanton has the appearance of a two-dimensional plane (the string worldsheet) with

a disc, of radius � say, removed from it. The di�erence between the action of such a

con�guration and that of the planar string worldsheet is roughly

I(�) = 2��m� ���2: (40)

Extremizing this action with respect to � gives the critical radius �c =m=�, and therefore

the value of the action at the critical point is

Ic = �m2=�: (41)

However, in order to approximate the C-metric we had to assume that the vortex was

much thinner than the width of the hole, or

m >
1p
��
� ��1=2: (42)

Thus, for Grand Uni�ed strings, we are perforce considering instantons with enormous

values of Ic: in fact,

Ic � O(��2) � 1012 (43)

in agreement with the estimates of [8].

In order to reduce the action below this value we have to reduce the size of the black

hole below that of the string, and thus move away from the C-metric. Recall that, apart

from some pinching, the vortex is essentially una�ected by the black hole horizon. This
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means that in the limit m� 1=
p
��, the black holes can be contained entirely within the

vortex, where the magnetic �eld is fairly uniform. In fact, near the centre of the vortex,

the strength of the magnetic �eld is B = Bs ' 2�=em2
v, where mv =

p
2e� is the mass of

the gauge �eld. We would expect this magnetic �eld to be able to nucleate magnetically

charged black holes, and that the instanton describing this process to resemble locally the

euclideanised Ernst metric [16,17] rather than the C-metric. The Ernst metric [12], we

recall, is an exact solution to the coupled Einstein-Maxwell �eld equations, describing a

pair of oppositely charged black holes accelerating under the in
uence of a magnetic �eld.

However, the real metric describing a string splitting into a pair of small black holes in the

Einstein-Abelian-Higgs system must con�ne the magnetic 
ux to within a distance m�1
v

of the axis of symmetry, and thus we would expect to recover the C-metric at spacelike

separations much greater than this. At intermediate scales, the 
ux lines emanating from

the black hole will get swept up and around into the con�ned vortex extending to in�nity,

as in �gure 2.

x=x

x=x

2

3

FIGURE (2): A representation of the nucleation of a small black hole within

a thick vortex.

The extra action for the creation, separation, and annihilation of a pair of virtual
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black holes in the background �eld B can be estimated as

I(�) = 2�m�� �qB�2; (44)

where q = 2�=e is the magnetic charge of the black hole. This is extremised at �c =m=qB,

so

Ic = �m2=qB: (45)

In the background supplied by the core of the vortex, we �nd (using � = 2��2, which is

only strictly true in when � = e2=2)

Ic =m2=2�: (46)

This is di�erent by a factor of 2� from the C-metric action extrapolated beyond its domain

of validity [6]. The minimum possible action is obtained when the hole is extremal, m = q,

for which

Ic = 2�=e2�; (47)

which for Grand Uni�ed strings is of order 107.

With this action we can estimate the rate per unit length of string 
 for the breaking

process as


 �M2 exp(�2�=e2�); (48)

where M is a mass scale in the problem. This can only be calculated by evaluating

the determinants of small 
uctuations in the instanton background, which is beyond the

scope of the present paper. However, we can estimate the prefactor by drawing on the

known rate per unit volume for particle creation in a uniform electric �eld E [23], which

is (e2E2=8�3) exp(��m2=eE). Since the �eld is con�ned to a tube of area m�2
v , the rate

should be approximately


 � e�4� exp(�2�=e2�): (49)

This rate is utterly negligible for GUT-scale strings. Even if the Universe was crammed

with strings, so that they begin to overlap, the rate of pair creation would still be only of

order �2t3 exp(�2�=e2�) � 10200 exp(�106).
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The best we can hope to do is to put a macroscopic superstring at the conical de�cit

of the C-metric. Of course, we should in that case solve the low-energy superstring �eld

equations, including the dilaton and the antisymmetric tensor �eld. (This would be very

similar to the calculation of [17], however with an axion, rather than electromagnetic,

�eld.) However, it is known that the metric around a superstring is also conical [24], so it

is not at all inconceivable that an exact solution (and an associated instanton) similar to

the C-metric exists in this theory.

The mass per unit length of a macroscopic superstring is g2=32�2 [25], where g is the

Grand Uni�ed gauge coupling, which is of order 10�3 at the GUT scale. We could not

reasonably expect the black holes to have less than the Planck mass, and so the exponential

factor is of order exp(�103). The entire history of the visible universe occupies only about
10240 Planck units of spacetime volume, and so the splitting process is negligible even for

superstrings, unless there is a period where the gauge coupling constant is large. In that

case, there might be a relic population of primordial black holes left behind by an early

phase of breaking superstrings.

To summarise: we have demonstrated that it is possible to replace the conical singu-

larities of the C-metrics and the Israel-Khan metric with a vortex solution of the abelian

Higgs model by calculating the gravitational back reaction to linear order in �, the energy

per unit length of the string. We consider the implications for the splitting of cosmic

strings and argue that if the decay does proceed by an instanton in the euclidean theory,

then it will in any case be suppressed by a ludicrously large factor even for GUT strings.

The tunnelling process for cosmic superstrings, which have a yet larger string tension, is

still extremely small. This suggests that although it is of great interest that otherwise

topologically stable strings might be unstable, it is probably of no relevance to practical

applications.
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