807 research outputs found

    On the triviality of certain non-Riemannian models of gravitation

    Get PDF
    We prove in the Tucker-Wang approach to non-Riemannian Gravity that a general homogeneous Lagrangian density in the general connection with order of homogeneity of at least two, gives no contribution to the generalised Einstein equations. Using this result other important cases are also considered.Comment: 12 pages, Latex, final version for Physics Letters

    The Einstein static universe with torsion and the sign problem of the cosmological constant

    Full text link
    In the field equations of Einstein-Cartan theory with cosmological constant a static spherically symmetric perfect fluid with spin density satisfying the Weyssenhoff restriction is considered. This serves as a rough model of space filled with (fermionic) dark matter. From this the Einstein static universe with constant torsion is constructed, generalising the Einstein Cosmos to Einstein-Cartan theory. The interplay between torsion and the cosmological constant is discussed. A possible way out of the cosmological constant's sign problem is suggested.Comment: 8 pages, LaTeX; minor layout changes, typos corrected, one new equation, new reference [5], completed reference [13], two references adde

    An exact solution of the metric-affine gauge theory with dilation, shear, and spin charges

    Get PDF
    The spacetime of the metric-affine gauge theory of gravity (MAG) encompasses {\it nonmetricity} and {\it torsion} as post-Riemannian structures. The sources of MAG are the conserved currents of energy-momentum and dilation, shear and spin. We present an exact static spherically symmetric vacuum solution of the theory describing the exterior of a lump of matter carrying mass and dilation, shear and spin charges.Comment: 13 pages, RevTe

    Measurement Theory and General Relativity

    Get PDF
    The theory of measurement is employed to elucidate the physical basis of general relativity. For measurements involving phenomena with intrinsic length or time scales, such scales must in general be negligible compared to the (translational and rotational) scales characteristic of the motion of the observer. Thus general relativity is a consistent theory of coincidences so long as these involve classical point particles and electromagnetic rays (geometric optics). Wave optics is discussed and the limitations of the standard theory in this regime are pointed out. A nonlocal theory of accelerated observers is briefly described that is consistent with observation and excludes the possibility of existence of a fundamental scalar field in nature.Comment: LaTeX springer style lamu.cls, 2 figures, 16 pages, published in: Black Holes: Theory and Observation: Proceedings of the 179th W.E. Heraeus Seminar, held August 1997 in Bad Honnef, Germany. F.W. Hehl et al.(eds). (Springer, Berlin Heidelberg 1998

    Metric-affine gauge theory of gravity II. Exact solutions

    Full text link
    In continuing our series on metric-affine gravity (see Gronwald IJMP D6 (1997) 263 for Part I), we review the exact solutions in this theory.Comment: Revtex file, 25 pages, final version to appear in IJMP

    Test Matter in a Spacetime with Nonmetricity

    Full text link
    Examples in which spacetime might become non-Riemannian appear above Planck energies in string theory or, in the very early universe, in the inflationary model. The simplest such geometry is metric-affine geometry, in which {\it nonmetricity} appears as a field strength, side by side with curvature and torsion. In matter, the shear and dilation currents couple to nonmetricity, and they are its sources. After reviewing the equations of motion and the Noether identities, we study two recent vacuum solutions of the metric-affine gauge theory of gravity. We then use the values of the nonmetricity in these solutions to study the motion of the appropriate test-matter. As a Regge-trajectory like hadronic excitation band, the test matter is endowed with shear degrees of freedom and described by a world spinor.Comment: 14 pages, file in late

    PP-waves with torsion and metric-affine gravity

    Full text link
    A classical pp-wave is a 4-dimensional Lorentzian spacetime which admits a nonvanishing parallel spinor field; here the connection is assumed to be Levi-Civita. We generalise this definition to metric compatible spacetimes with torsion and describe basic properties of such spacetimes. We use our generalised pp-waves for constructing new explicit vacuum solutions of quadratic metric-affine gravity.Comment: 17 pages, LaTeX2

    Axial Torsion-Dirac spin Effect in Rotating Frame with Relativistic Factor

    Full text link
    In the framework of spacetime with torsion and without curvature, the Dirac particle spin precession in the rotational system is studied. We write out the equivalent tetrad of rotating frame, in the polar coordinate system, through considering the relativistic factor, and the resultant equivalent metric is a flat Minkowski one. The obtained rotation-spin coupling formula can be applied to the high speed rotating case, which is consistent with the expectation.Comment: 6 page

    Strings in gravity with torsion

    Get PDF
    A theory of gravitation in 4D is presented with strings used in the material action in U4U_4 spacetime. It is shown that the string naturally gives rise to torsion. It is also shown that the equation of motion a string follows from the Bianchi identity, gives the identical result as the Noether conservation laws, and follows a geodesic only in the lowest order approximation. In addition, the conservation laws show that strings naturally have spin, which arises not from their motion but from their one dimensional structure.Comment: 16 page

    An assessment of Evans' unified field theory I

    Get PDF
    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe theta and a (metric compatible) Lorentz connection Gamma. These two potentials yield the field strengths torsion T and curvature R. Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe theta to be proportional to four extended electromagnetic potentials A; these are assumed to encompass the conventional Maxwellian potential in a suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans' ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.Comment: 39 pages of latex, modified because of referee report, mistakes and typos removed, partly reformulated, taken care of M.W.Evans' rebutta
    corecore