31 research outputs found

    Theory of the critical current in two-band superconductors with application to MgB2

    Full text link
    Using a Green's function formulation of the superfluid current j_s, where a momentum q_s is applied to the Cooper pair, we have calculated j_s as a function of q_s, temperature, and impurity scattering for a two-band superconductor. We consider both renormalized BCS and full strong-coupling Eliashberg theory. There are two peaks in the current as a function of q_s due to the two energy scales for the gaps and this can give rise to non-standard behavior for the critical current. The critical current j_c, which is given as the maximum in j_s, can exhibit a kink as a function of temperature as the maximum is transferred from one peak to other. Other temperature variations are also possible and the universal BCS behavior is violated. The details depend on the material parameters of the system, such as the amount of coupling between the bands, the gap anisotropy, the Fermi velocities, and the density of states of each band. The Ginzburg-Landau relation between j_c, the penetration depth lambda_L and thermodynamic critical field H_c, is modified. Using Eliashberg theory with the electron-phonon spectral densities given from bandstructure calculations, we have applied our calculations for j_s and j_c to the case of MgB2 and find agreement with experiment.Comment: 13 pages, 7 figures, submitted to PR

    Nonlinear current response of one- and two-band superconductors

    Full text link
    We have calculated the nonlinear current of a number of single band s-wave electron-phonon superconductors. Among issues considered were those of dimensionality, strong electron-phonon coupling, impurities, and comparison with BCS. For the case of two bands, particular attention is paid to the role of anisotropy, the integration effects of the off-diagonal electron-phonon interaction, as well as inter- and intraband impurities. For the specific case of MgB2, we present results based on the known microscopic parameters of band theory.Comment: 10 pages, 6 figure

    Ultrasonographic median nerve cross-section areas measured by 8-point "inching test" for idiopathic carpal tunnel syndrome: a correlation of nerve conduction study severity and duration of clinical symptoms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Incremental palmar stimulation of the median nerve sensory conduction at the wrist, the "inching test", provides an assessment with reference to segments proximal and distal to the entrapment. This study used high-resolution ultrasonography (US) to measure the median nerve's cross-section areas (CSAs) like the "inching test" and to correlate with the nerve conduction study (NCS) severity and duration of carpal tunnel syndrome (CTS).</p> <p>Methods</p> <p>Two hundred and twelve (212) "CTS-hands" from 135 CTS patients and 50 asymptomatic hands ("A-hands") from 25 control individuals were enrolled. The median nerve CSAs were measured at the 8-point marked as <it>i</it>4, <it>i</it>3, <it>i</it>2, <it>i</it>1, <it>w</it>, <it>o</it>1, <it>o</it>2, and <it>0</it>3 in inching test. The NCS severities were classified into six groups based on motor and sensory responses (i.e., negative, minimal, mild, moderate, severe, and extreme). Results of US studies were compared in terms of NCS severity and duration of clinical CTS symptoms.</p> <p>Results</p> <p>There was significantly larger CSA of the NCS negative group of "CTS-hands" than of "A-hands". The cut-off values of the CSAs of the NCS negative CTS group were 12.5 mm<sup>2</sup>, 11.5 mm<sup>2 </sup>and 10.1 mm<sup>2 </sup>at the inlet, wrist crease, and outlet, respectively. Of the 212 "CTS-hands", 32 were NCS negative while 40 had minimal, 43 mild, 85 moderate, 10 severe, and two extreme NCS severities. The CSAs of "CTS-hands" positively correlated with different NCS severities and with the duration of CTS symptoms. By duration of clinical symptoms, 12 of the 212 "CTS-hands" were in the 1 month group; 82 in >1 month and ≤12 months group, and 118 in >12 months group. In "inching test", segments <it>i</it>4-<it>i</it>3 and <it>i</it>3-<it>i</it>2 were the most common "positive-site". The corresponding CSAs measured at <it>i</it>4 and <it>i</it>3, but not at <it>i</it>2, were significantly larger than those measured at points that were not "positive-site".</p> <p>Conclusions</p> <p>Using the 8-point measurement of the median nerve CSA from inlet to outlet similar to the "inching test" has positive correlations with NCS severity and duration of CTS clinical symptoms, and can provide more information on anatomic changes. Combined NCS and US studies using the 8-point measurement may have a higher positive rate than NCS alone for diagnosing CTS.</p

    Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models

    Get PDF
    <div><p>Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.</p></div

    Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity

    No full text
    Despite the importance of land cover on landscape hydrology and slope stability, the representation of land cover dynamics in physically based models and their associated ecohydrological effects on slope stability is rather scarce. In this study, we assess the impact of different levels of complexity in land cover parameterisation on the explanatory power of a dynamic and process-based spatial slope stability model. Firstly, we present available and collected data sets and account for the stepwise parameterisation of the model. Secondly, we present approaches to simulate land cover: 1) a grassland landscape without forest coverage; 2) spatially static forest conditions, in which we assume limited knowledge about forest composition; 3) more detailed information of forested areas based on the computation of leaf area development and the implementation of vegetation-related processes; 4) similar to the third approach but with the additional consideration of the spatial expansion and vertical growth of vegetation. Lastly, the model is calibrated based on meteorological data sets and groundwater measurements. The model results are quantitatively validated for two landslide-triggering events that occurred in Western Austria. Predictive performances are estimated using the Area Under the receiver operating characteristic Curve (AUC). Our findings indicate that the performance of the slope stability model was strongly determined by model complexity and land cover parameterisation. The implementation of leaf area development and land cover dynamics further yield an acceptable predictive performance (AUC ~0.71-0.75) and a better conservativeness of the predicted unstable areas (FoC ~0.71). The consideration of dynamic land cover expansion provided better performances than the solely consideration of leaf area development. The results of this study highlight that an increase of effort in the land cover parameterisation of a dynamic slope stability model can increase the explanatory power of the model.Water Resource
    corecore