256,832 research outputs found

    A CFD-informed quasi-steady model of flapping-wing aerodynamics

    Get PDF
    Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimization is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into quasi-steady forces and parameterized based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power as the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterized on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. This demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned aerial systems

    Intrinsic electron-doping in nominal "non-doped" superconducting (La,Y)2_2CuO4_4 thin films grown by dc magnetron sputtering

    Full text link
    The superconducting nominal "non-doped" La1.85Y0.15CuO4La_{1.85}Y_{0.15}CuO_4 (LYCO) thin films are successfully prepared by dc magnetron-sputtering and in situ post-annealing in vacuum. The best TC0T_{C0} more than 13K is achieved in the optimal LYCO films with highly pure c-axis oriented T'-type structure. In the normal state, the quasi-quadratic temperature dependence of resistivity, the negative Hall coefficient and effect of oxygen content in the films are quite similar to the typical Ce-doped T'-214 cuprates, suggesting that T'-LYCO shows the electron-doping nature like known n-type cuprates, and is not a band superconductor as proposed previously. The charge carriers are considered to be induced by oxygen deficiency.Comment: 5 pages, 7 figure

    Helium Recombination Lines as a Probe of Abundance and Temperature Problems

    Get PDF
    The paper presents a simplified formula to determine an electron temperature, Te(He I), for planetary nebulae (PNe) using the He I 7281/6678 line flux ratio. In our previous studies of Te(He I) (Zhang et al. 2005), we used the He I line emission coefficients given by Benjamin et al. (1999). Here we examine the results of using more recent atomic data presented by Porter et al. (2005). A good agreement is shown, suggesting that the effect of uncertainties of atomic data on the resultant Te(He I) is negligible. We also present an analytical formula to derive electron temperature using the He I discontinuity at 3421 A. Our analysis shows that Te(He I) values are significantly lower than electron temperatures deduced from the Balmer jump of H I recombination spectra, Te(H I), and that inferred from the collisionally excited [O III] nebular-to-auroral forbidden line flux ratio, Te([O III]). In addition, Te(H I) covers a wider range of values than either Te(He I) or Te([O III]). This supports the two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a ``normal'' chemical composition (i.e. ~solar).Comment: 5 pages, 3 figures. To appear in the RevMexAA proceedings of "The Ninth Texas-Mexico Conference on Astrophysics

    Thermal loading in the laser holography nondestructive testing of a composite structure

    Get PDF
    A laser holographic interferometry method that has variable sensitivity to surface deformation was applied to the investigation of composite test samples under thermal loading. A successful attempt was made to detect debonds in a fiberglass-epoxy-ceramic plate. Experimental results are presented along with the mathematical analysis of the physical model of the thermal loading and current conduction in the composite material

    Holographic nondestructive tests performed on composite samples of ceramic-epoxy-fiberglass sandwich structure

    Get PDF
    When a hologram storing more than one wave is illuminated with coherent light, the reconstructed wave fronts interfere with each other or with any other phase-related wave front derived from the illuminating source. This multiple wave front comparison is called holographic interferometry, and its application is called holographic nondestructive testing (HNDT). The theoretical aspects of HNDT techniques and the sensitivity of the holographic system to the geometrical placement of the optical components are briefly discussed. A unique HNDT system which is mobile and possesses variable sensitivity to stress amplitude is discribed, the experimental evidence of the application of this system to the testing of the hidden debonds in a ceramic-epoxy-fiberglass structure used for sample testing of the radome of the Pershing missile system is presented

    Understanding the different rotational behaviors of 252^{252}No and 254^{254}No

    Get PDF
    Total Routhian surface calculations have been performed to investigate rapidly rotating transfermium nuclei, the heaviest nuclei accessible by detailed spectroscopy experiments. The observed fast alignment in 252^{252}No and slow alignment in 254^{254}No are well reproduced by the calculations incorporating high-order deformations. The different rotational behaviors of 252^{252}No and 254^{254}No can be understood for the first time in terms of β6\beta_6 deformation that decreases the energies of the νj15/2\nu j_{15/2} intruder orbitals below the N=152 gap. Our investigations reveal the importance of high-order deformation in describing not only the multi-quasiparticle states but also the rotational spectra, both providing probes of the single-particle structure concerning the expected doubly-magic superheavy nuclei.Comment: 5 pages, 4 figures, the version accepted for publication in Phys. Rev.
    • …
    corecore