2,318 research outputs found

    Excited states of neutral donor bound excitons in GaN

    Get PDF
    We investigate the excited states of a neutral donor bound exciton (D0X) in bulk GaN by means of high-resolution, polychromatic photoluminescence excitation (PLE) spectroscopy. The optically most prominent donor in our sample is silicon accompanied by only a minor contribution of oxygen—the key for an unambiguous assignment of excited states. Consequently, we can observe a multitude of Si0X-related excitation channels with linewidths down to 200 μeV. Two groups of excitation channels are identified, belonging either to rotational-vibrational or electronic excited states of the hole in the Si0X complex. Such identification is achieved by modeling the excited states based on the equations of motion for a Kratzer potential, taking into account the particularly large anisotropy of effective hole masses in GaN. Furthermore, several ground- and excited states of the exciton-polaritons and the dominant bound exciton are observed in the photoluminescence (PL) and PLE spectra, facilitating an estimate of the associated complex binding energies. Our data clearly show that great care must be taken if only PL spectra of D0X centers in GaN are analyzed. Every PL feature we observe at higher emission energies with regard to the Si0X ground state corresponds to an excited state. Hence, any unambiguous peak identification renders PLE spectra highly valuable, as important spectral features are obscured in common PL spectra. Here, GaN represents a particular case among the wide-bandgap, wurtzite semiconductors, as comparably low localization energies for common D0X centers are usually paired with large emission linewidths and the prominent optical signature of exciton-polaritons, making the sole analysis of PL spectra a challenging task.EC/H2020/749565/EU/Heat Transport and its Effects on the Performance of Nanostructured, Photonic Materials/PhotoHeatEffectDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte

    Get PDF
    The importance of global sensitivity analysis (GSA) has been well established in many scientific areas. However, despite its critical role in evaluating a model’s plausibility and relevance, most lithium ion battery models are published without any sensitivity analysis. In order to improve the lifetime performance of battery packs, researchers are investigating the application of physics based electrochemical models, such as the single particle model with electrolyte (SPMe). This is a challenging research area from both the parameter estimation and modelling perspective. One key challenge is the number of unknown parameters: the SPMe contains 31 parameters, many of which are themselves non-linear functions of other parameters. As such, relatively few authors have tackled this parameter estimation problem. This is exacerbated because there are no GSAs of the SPMe which have been published previously. This article addresses this gap in the literature and identifies the most sensitive parameter, preventing time being wasted on refining parameters which the output is insensitive to

    A Second-Generation Janus Scorpionate Ligand: Controlling Coordination Modes in Iron(II) Complexes by Steric Modulation

    Get PDF
    The second-generation Janus scorpionate ligand [HB(mtdaMe)3−] containing methyl-mercaptothiadiazolyl (mtdaMe) heterocyclic rings and (N,N,N-) and (S,S,S-) binding pockets has been prepared. The effect of methyl substitution versus the unsubstituted first-generation Janus scorpionate [HB(mtda)3]− on the coordination chemistry with alkali metals and on the binding preferences and on the ground spin state of iron(II) complexes has been studied structurally and by 57Fe Mossbauer Spectroscopy

    Accelerated energy capacity measurement of lithium-ion cells to support future circular economy strategies for electric vehicles

    Get PDF
    Within the academic and industrial communities there has been an increasing desire to better understand the sustainability of producing vehicles that contain embedded electrochemical energy storage. Underpinning a number of studies that evaluate different circular economy strategies for the electric vehicle (EV) or Hybrid electric vehicle (HEV) battery system are implicit assumptions about the retained capacity or State of Health (SOH) of the battery. International standards and bestpractice guides exist that address the performance evaluation of both EV and HEV battery systems. However, a common theme is that the test duration can be excessive and last for a number of hours. The aim of this research is to assess whether energy capacity measurements of Li-ion cells can be accelerated; reducing the test duration to a value that may facilitate further EOL options. Experimental results are presented that highlight it is possible to significantly reduce the duration of the battery characterisation test by 70% - 90% while still retaining levels of measurement accuracy for retained energy capacity in the order of 1% for cell temperatures equal to 250C. Even at elevated temperatures of 400C, the peak measurement error was found to be only 3%. Based on these experimental results, a simple cost-function is formulated to highlight the flexibility of the proposed test framework. This approach would allow different organizations to prioritize the relative importance of test accuracy verses experimental test time when grading used Li-ion cells for different end-of-life (EOL) applications

    Large K-exciton dynamics in GaN epilayers: the non-thermal and thermal regime

    Full text link
    We present a detailed investigation concerning the exciton dynamics in GaN epilayers grown on c-plane sapphire substrates, focussing on the exciton formation and the transition from the nonthermal to the thermal regime. The time-resolved kinetics of LO-phonon replicas is used to address the energy relaxation in the excitonic band. From ps time-resolved spectra we bring evidence for a long lasting non-thermal excitonic distribution which accounts for the rst 50 ps. Such a behavior is con rmed in di erent experimental conditions, both when non-resonant and resonant excitation are used. At low excitation power density the exciton formation and their subsequent thermalization is dominated by impurity scattering rather than by acoustic phonon scattering. The estimate of the average energy of the excitons as a function of delay after the excitation pulse provides information on the relaxation time, which describes the evolution of the exciton population to the thermal regime.Comment: 9 pages,8 figure

    Cycle life of lithium ion batteries after flash cryogenic freezing

    Get PDF
    Growing global sales of electric vehicles (EVs) are raising concerns about the reverse logistics challenge of transporting damaged, defective and waste lithium ion battery (LIB) packs. The European Union Battery Directive stipulates that 50% of LIBs must be recycled and EV manufacturers are responsible for collection, treatment and recycling. The International Carriage of Dangerous Goods by Road requirement to transport damaged or defective LIB packs in approved explosion proof steel containers imposes expensive certification. Further, the physical weight and volume of LIB packaging increases transport costs of damaged or defective packs as part of a complete recycling or repurposing strategy. Cryogenic flash freezing (CFF) removes the possibility of thermal runaway in LIBs even in extreme abuse conditions. Meaning damaged or defective LIBs may be transported safely whilst cryogenically frozen. Herein, LIBs are cycled until 20% capacity fade to establish that CFF does not affect electrical performance (energy capacity and impedance) during ageing. This is demonstrated on two different cell chemistries and form factors. The potential to remanufacture or reuse cells/modules subjected to CFF supports circular economy principles through extending useful life and reducing raw material usage. Thereby improving the environmental sustainability of transitioning from internal combustion engines to EVs

    Pyrazolyl Methyls Prescribe the Electronic Properties of Iron(II) Tetra(pyrazolyl)lutidine Chloride Complexes

    Get PDF
    A series of iron(II) chloride complexes of pentadentate ligands related to α,α,α′,α′-tetra(pyrazolyl)-2,6-lutidine, pz4lut, has been prepared to evaluate whether pyrazolyl substitution has any systematic impact on the electronic properties of the complexes. For this purpose, the new tetrakis(3,4,5-trimethylpyrazolyl)lutidine ligand, pz**4lut, was prepared via a CoCl2-catalyzed rearrangement reaction. The equimolar combination of ligand and FeCl2 in methanol gives the appropriate 1:1 complexes [FeCl(pzR4lut)]Cl that are each isolated in the solid state as a hygroscopic solvate. In solution, the iron(II) complexes have been fully characterized by several spectroscopic methods and cyclic voltammetry. In the solid state, the complexes have been characterized by X-ray diffraction, and, in some cases, by Mössbauer spectroscopy. The Mössbauer studies show that the complexes remain high spin to 4 K and exclude spin-state changes as the cause of the surprising solid-state thermochromic properties of the complexes. Non-intuitive results of spectroscopic and structural studies showed that methyl substitution at the 3- and 5- positions of the pyrazolyl rings reduces the ligand field strength through steric effects whereas methyl substitution at the 4-position of the pyrazolyl rings increases the ligand field strength through inductive effects
    • …
    corecore