253 research outputs found

    Mitochondrial DNA and neurodegeneration: Any role for dietary antioxidants?

    Get PDF
    The maintenance of the mitochondrial function is essential in preventing and counteracting neurodegeneration. In particular, mitochondria of neuronal cells play a pivotal role in sustaining the high energetic metabolism of these cells and are especially prone to oxidative damage. Since overproduction of reactive oxygen species (ROS) is involved in the pathogenesis of neurodegeneration, dietary antioxidants have been suggested to counteract the detrimental effects of ROS and to preserve the mitochondrial function, thus slowing the progression and limiting the extent of neuronal cell loss in neurodegenerative disorders. In addition to their role in the redox-system homeostasis, mitochondria are unique organelles in that they contain their own genome (mtDNA), which acts at the interface between environmental exposures and the molecular triggers of neurodegeneration. Indeed, it has been demonstrated that mtDNA (including both genetics and, from recent evidence, epigenetics) might play relevant roles in modulating the risk for neurodegenerative disorders. This mini-review describes the link between the mitochondrial genome and cellular oxidative status, with a particular focus on neurodegeneration; moreover, it provides an overview on potential beneficial effects of antioxidants in preserving mitochondrial functions through the protection of mtDNA

    Can Early Life Exposure to Permethrin lead to intergenerational effects?

    Get PDF
    Pesticides are largely used in agriculture against pests and consequently are present in fruits and vegetables. The wide presence of pesticide residues in breast milk underline the risk for the population, focalizing the long-term consequence of early life pyrethroid exposure. The significant presence of pyrethroid metabolites in the urine of population over the world confirms that their presence in food is a global problem. It has been demonstrated that there is a correlation between the environmental exposure to pesticides and the development of neurodegenerative diseases. Neonatal exposure to Permethrin (PERM), a member of the family of synthetic pyrethroids, can induce neurodegeneration (i.e. Parkinson’s –like disease) and it can cause some alterations in striatum of rats, involving both genetic and epigenetic pathways. The aim of this study was to evaluate if the rat offspring (F1 generation) exposed to a low dose of PERM from postnatal day 6 to 21, presents alterations in Nurr1 gene expression as previously observed in early life permethrin treated male rats. Moreover, global DNA methylation was analyzed in untreated early life exposed mothers and offspring (F1 generation). Methods Through Nurr1gene expression analysis and global DNA methylation assessment in both PERM-treated parents and their untreated offspring, we investigated on the prospective intergenerational effect of this pesticide. Results 33% of progeny presents the same Nurr1 alteration as rats exposed to permethrin in early life. A decrease in global genome-wide DNA methylation was measured in mothers exposed in early life to permethrin as well as in their offspring, whereas untreated rats have a hypermethylated genomic DNA. Conclutions Intergenerational PERM-induced damage on progenies has been identified for the first time. On the light of these results, pesticide residues in the food could represent a risk factor for the health of children especially in early life when the brain is still in the developing phase. Further studies are needed to elucidate the molecular mechanisms associated with the damage

    Effects of essential oils from Cymbopogon spp. and Cinnamomum verum on biofilm and virulence properties of Escherichia coli O157:H7

    Get PDF
    Every year, the pharmaceutical and food industries produce over 1000 tons of essential oils (EOs) exploitable in different fields as the development of eco-friendly and safe antimicrobial inhibitors. In this work we investigated the potential of some EOs, namely Cinnamomum verum, Cymbopogon martini, Cymbopogoncitratus and Cymbopogon flexuosus, on the growth, biofilm formation and gene expression in four strains of enterohemorrhagic Escherichia coli O157:H7. All EOs were analyzed by gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity was performed by using dilutions of EOs ranging from 0.001 to 1.2% (v/v). Subinhibitory doses were used for biofilm inhibition assay. The expression profiles were obtained by RT-PCR. E. coli O157:H7 virulence was evaluated in vivo in the nematode Caenorhabditis elegans. All EOs showed minimal inhibitory concentrations (MICs) ranging from 0.0075 to 0.3% (v/v). Cinnamomum verum bark EO had the best activity (MIC of 0.0075% (v/v) in all strains) while the C. verum leaf EO had an intermediate efficacy with MIC of 0.175% (v/v) in almost all strains. The Cymbopogon spp. showed the more variable MICs (ranging from 0.075 to 0.3% (v/v)) depending on the strain used. Transcriptional analysis showed that C. martini EO repressed several genes involved in biofilm formation, virulence, zinc homeostasis and encoding some membrane proteins. All EOs affected zinc homeostasis, reducing ykgM and zinT expression, and reduced the ability of E. coli O157:H7 to infect the nematode C. elegans. In conclusion, we demonstrated that these EOs, affecting E. coli O157:H7 infectivity, have a great potential to be used against infections caused by microorganisms

    Effect of Nedocromil Sodium on Polymorphonuclear Leukocyte Plasma Membrane

    Get PDF
    The effect of nedocromil sodium on the plasma membrane fluidity of polymorphonuclear leukocytes (PMNs) was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) incorporated in the membrane. Our results show that nedocromil sodium 300 μM significantly decreased membrane fluidity of PMNs. The decrease in membrane fluidity of PMNs induced by fMLP was abolished in the presence of nedocromil sodium. These data suggest that nedocromil sodium interferes with the plasma membranes of PMNs and modulates their activities
    • …
    corecore