6,286 research outputs found

    Study of Monte Carlo approach to experimental uncertainty propagation with MSTW 2008 PDFs

    Get PDF
    We investigate the Monte Carlo approach to propagation of experimental uncertainties within the context of the established "MSTW 2008" global analysis of parton distribution functions (PDFs) of the proton at next-to-leading order in the strong coupling. We show that the Monte Carlo approach using replicas of the original data gives PDF uncertainties in good agreement with the usual Hessian approach using the standard Delta(chi^2) = 1 criterion, then we explore potential parameterisation bias by increasing the number of free parameters, concluding that any parameterisation bias is likely to be small, with the exception of the valence-quark distributions at low momentum fractions x. We motivate the need for a larger tolerance, Delta(chi^2) > 1, by making fits to restricted data sets and idealised consistent or inconsistent pseudodata. Instead of using data replicas, we alternatively produce PDF sets randomly distributed according to the covariance matrix of fit parameters including appropriate tolerance values, then we demonstrate a simpler method to produce an arbitrary number of random predictions on-the-fly from the existing eigenvector PDF sets. Finally, as a simple example application, we use Bayesian reweighting to study the effect of recent LHC data on the lepton charge asymmetry from W boson decays.Comment: 37 pages, 17 figures. v2: version published in JHEP. Supplementary material at http://mstwpdf.hepforge.org/random

    Recent Progress in Parton Distributions and Implications for LHC Physics

    Full text link
    I outline some of the most recent developments on the global fit to parton distributions performed by the MRST collaboration.Comment: 6 pages, 7 figures. To appear in proceedings of XIII International Workshop on Deep Inelastic Scattering, April,27 - May,1, 2005, Madison, Wisconsin, US

    On the structure of line-driven winds near black holes

    Full text link
    A general physical mechanism of the formation of line-driven winds at the vicinity of strong gravitational field sources is investigated in the frame of General Relativity. We argue that gravitational redshifting should be taken into account to model such outflows. The generalization of the Sobolev approximation in the frame of General Relativity is presented. We consider all processes in the metric of a nonrotating (Schwarzschild) black hole. The radiation force that is due to absorbtion of the radiation flux in lines is derived. It is demonstrated that if gravitational redshifting is taken into account, the radiation force becomes a function of the local velocity gradient (as in the standard line-driven wind theory) and the gradient of g00g_{00}. We derive a general relativistic equation of motion describing such flow. A solution of the equation of motion is obtained and confronted with that obtained from the Castor, Abbott & Klein (CAK) theory. It is shown that the proposed mechanism could have an important contribution to the formation of line-driven outflows from compact objects.Comment: 20 pages, submitted to Ap

    An Ordered Analysis of Heavy Flavour Production in Deep Inelastic Scattering

    Get PDF
    At low Q^2, charm production in deep-inelastic scattering is adequately described by assuming generation in electroweak boson-light parton scattering (dominantly boson-gluon fusion) which naturally incorporates the correct threshold behaviour. At high Q^2 this description is inadequate, since it does not sum logs in Q^2/m_c^2, and is replaced by the treatment of the charm quark as a light parton. We show how the problem of going from one description to the other can be solved in a satisfactory manner to all orders. The key ingredient is the constraint of matching the evolution of the physical structure function F_2 order by order in alpha_s(Q^2) in addition to the matching of the value of F_2 itself. This leads to new expressions for the coefficient functions associated with the charm parton which are unique in incorporating both the correct threshold and asymptotic behaviours at each order in perturbation theory. The use of these improved coefficients lead to an improvement in global fits and an excellent description of the observed F_2,charm.Comment: Tex file, including a modification of Harvmac, 48 pages, 9 figures as .ps file

    Head-on infall of two compact objects: Third post-Newtonian Energy Flux

    Full text link
    Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.Comment: 25 pages, 2 figures, This version includes the changes appearing in the Erratum published in Phys. Rev.
    corecore