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We show that the Monte Carlo approach using replicas of the original data gives PDF un-

certainties in good agreement with the usual Hessian approach using the standard ∆χ2 = 1

criterion, then we explore potential parameterisation bias by increasing the number of free

parameters, concluding that any parameterisation bias is likely to be small, with the ex-

ception of the valence-quark distributions at low momentum fractions x. We motivate the

need for a larger tolerance, ∆χ2 > 1, by making fits to restricted data sets and idealised

consistent or inconsistent pseudodata. Instead of using data replicas, we alternatively pro-

duce PDF sets randomly distributed according to the covariance matrix of fit parameters

including appropriate tolerance values, then we demonstrate a simpler method to produce

an arbitrary number of random predictions on-the-fly from the existing eigenvector PDF
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effect of recent LHC data on the lepton charge asymmetry from W boson decays.
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1 Introduction

The parton distribution functions (PDFs) of the proton are best determined from global

analysis of a wide variety of deep-inelastic scattering (DIS) and related hard-scattering data

taken from both fixed-target experiments and colliders (HERA, the Tevatron, and most

recently the LHC). Propagation of the experimental errors on the fitted data points to the

uncertainties on the PDFs is a non-trivial task. The traditional Hessian method requires

effective error inflation by a tolerance parameter to accommodate minor inconsistencies

between the fitted data sets. This means that the PDF uncertainties cannot be consid-

ered to be statistically rigorous, despite the rôle of PDF uncertainties as an important

(and sometimes dominant) source of theoretical uncertainty on predicted quantities, such

as the cross sections for Drell-Yan processes or Higgs boson production at the Tevatron

and LHC [1, 2]. Moreover, the number of fitted parameters for error propagation in the

Hessian method must be kept sufficiently small to avoid large correlations, often requiring

several parameters to be held fixed and thereby introducing a potential parameterisation

bias. Some insight into these problems may be gained using Monte Carlo techniques [3, 4],

recently used in conjunction with a neural-network parameterisation by the NNPDF Col-

laboration ([5], and references therein), where a large number Nrep ∼ O(10–1000) of fits are

performed, each to a sample of replica pseudodata generated by shifting the original data

points by random amounts dependent on the data errors. Then the PDF uncertainties can

be calculated by simply taking the standard deviation of the resulting Nrep PDF sets.
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In this paper we make a first study of the Monte Carlo approach to experimental error

propagation within the context of the established “MSTW 2008” PDF determination [6].

We retain the usual functional-form parameterisation and least-squares χ2-minimisation

(using the Levenberg-Marquardt algorithm) rather than moving to the neural-network

parameterisation and genetic-algorithm χ2-minimisation of the NNPDF approach [5]. We

focus on the most widely-used PDF determination at next-to-leading order (NLO) in the

strong coupling αS , although the results would be expected to be similar at leading-order

(LO) and at next-to-next-to-leading order (NNLO). Moreover, to avoid complications

associated with simultaneously fitting αS with the PDFs, throughout this paper we keep

the value of αS(M
2
Z) held fixed at the MSTW 2008 NLO best-fit value. First in section 2

we describe the Monte Carlo approach using data replicas and compare results to the

usual Hessian method, then in section 3 we explore potential parameterisation bias by

increasing the number of free parameters. We then motivate the need for a tolerance

parameter by fitting restricted data sets in section 4 and by fitting idealised pseudodata

in section 5. In section 6 we explain how to produce PDF sets randomly distributed in

the space of parameters rather than in the space of data, which allows the inclusion of

a suitable tolerance. As an example application of these random PDFs, in section 7 we

demonstrate the use of Bayesian reweighting to study the effect of recent LHC data on the

W → ℓν charge asymmetry [7, 8]. Finally, we conclude in section 8.

2 Comparison of Hessian and Monte Carlo uncertainties

2.1 Recap of the Hessian method

The basic procedure for propagating experimental uncertainties in global PDF analyses

using the Hessian method is discussed in detail in refs. [6, 9–11]. Here, we briefly review

the salient points. We assume that the global goodness-of-fit quantity, χ2
global, is quadratic

about the global minimum, which has n best-fit parameters {a01, . . . , a0n}. In this case we

can write

∆χ2
global ≡ χ2

global − χ2
min =

n
∑

i,j=1

Hij(ai − a0i )(aj − a0j ) , (2.1)

where the Hessian matrix H has components

Hij =
1

2

∂2χ2
global

∂ai∂aj

∣

∣

∣

∣

min

. (2.2)

It is convenient to diagonalise the covariance (inverse Hessian) matrix, C ≡ H−1, also

known as the error matrix, and work in terms of the eigenvectors and eigenvalues. Since

the covariance matrix is symmetric it has a set of orthonormal eigenvectors ~vk defined by

n
∑

j=1

Cijvjk = λkvik , (2.3)

where λk is the kth eigenvalue and vik is the ith component of the kth orthonormal eigen-

vector (k = 1, . . . , n). The parameter displacements from the global minimum can be
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expanded in a basis of rescaled eigenvectors eik ≡ √
λkvik, that is,

ai − a0i =

n
∑

k=1

eikzk . (2.4)

Then it can be shown, using the orthonormality of ~vk, that eq. (2.1) reduces to

χ2
global = χ2

min +

n
∑

k=1

z2k , (2.5)

that is,
∑n

k=1 z
2
k ≤ T 2 is the interior of a hypersphere of radius T . Pairs of eigenvector

PDF sets S±
k can then be produced to span this hypersphere, with parameters given by

ai(S
±
k ) = a0i ± t eik . (2.6)

In the quadratic approximation, t = T ≡ (∆χ2
global)

1/2, but particularly for the larger

eigenvalues λk there are significant deviations from the ideal quadratic behaviour, so in

general t is adjusted iteratively to give the desired value of T . Then asymmetric PDF

uncertainties on a quantity F , which may be an individual PDF at particular values of x

and Q2, or a derived quantity such as a cross section, can be calculated with the following

“master equations”:

(∆F )+ =

√

√

√

√

n
∑

k=1

{

max
[

F (S+
k )− F (S0), F (S−

k )− F (S0), 0
]}2

, (2.7)

(∆F )− =

√

√

√

√

n
∑

k=1

{

max
[

F (S0)− F (S+
k ), F (S0)− F (S−

k ), 0
]}2

, (2.8)

where S0 is the central PDF set. Symmetric PDF uncertainties can be calculated with

∆F =
1

2

√

√

√

√

n
∑

k=1

[

F (S+
k )− F (S−

k )
]2

. (2.9)

Ideally, with the standard “parameter-fitting” criterion [12], we would expect the errors

to be given by the choice of tolerance T = 1 for the 68% (one-sigma) confidence-level

(C.L.) limit or T = 1.64 for the 90%C.L. limit [13]. This criterion is appropriate if fitting

consistent data sets with ideal Gaussian errors to a well-defined theory. However, in prac-

tice, there are some inconsistencies between the independent fitted data sets, and unknown

experimental and theoretical uncertainties, so the parameter-fitting criterion is not appro-

priate for global PDF analyses. Historically, the CTEQ [10] and MRST [11] groups defined

90%C.L. uncertainties using T =
√
100 and T =

√
50, respectively. Instead, the “MSTW

2008” analysis [6] introduced a new “dynamic” determination of the tolerance, chosen sep-

arately for each eigenvector direction according to a “hypothesis-testing” criterion [12] to

maintain an adequate description of each individual data set in the global fit. Therefore,

the distance t in eq. (2.6) was replaced by t±k , adjusted to give the desired T±
k , with an

average value of 〈t±k 〉 ≈ 〈T±
k 〉 ≈ 3 for 68%C.L. uncertainties, and 〈t±k 〉 ≈ 〈T±

k 〉 ≈ 6 for

90%C.L. uncertainties; see figure 10 of ref. [6] for the individual T±
k values in the MSTW

2008 NLO fit.
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2.2 Generation of Monte Carlo replica sets

We generate replica data sets with the central values shifted according to

Dm,i →
(

Dm,i +Runcorr.
m,i σuncorr.

m,i +

Ncorr.
∑

k=1

Rcorr.
m,k σcorr.

m,k,i

)

·
(

1 +RN
m σN

m

)

. (2.10)

Here, “m” labels a particular data set, or a combination of data sets, with a common (fitted)

normalisation Nm, “i” labels the individual data points in that data set, and “k” labels the

individual correlated systematic errors for a particular data set. The individual data points

Dm,i have uncorrelated (statistical and systematic) errors σuncorr.
m,i and correlated systematic

errors σcorr.
m,k,i. Treating the correlated errors as uncorrelated leads to the alternative form

used for most of the data sets in the MSTW 2008 fit:

Dm,i →
(

Dm,i +Runcorr.
m,i σtot.

m,i

)

·
(

1 +RN
m σN

m

)

, (2.11)

where the total error is simply obtained by adding all errors (except normalisation) in

quadrature,

(

σtot.
m,i

)2
=

(

σuncorr.
m,i

)2
+

Ncorr.
∑

k=1

(

σcorr.
m,k,i

)2
. (2.12)

We shift the data points in a way to be as consistent as possible with the χ2 definition

used in the MSTW 2008 fit [6]. The random numbers Runcorr.
m,i or Rcorr.

m,k are obtained from a

Gaussian distribution of mean zero and variance one. A complication arises with the treat-

ment of normalisation uncertainties in the MSTW 2008 analysis, where a quartic penalty

term was used in the χ2 definition instead of the usual quadratic penalty term, cf. eqs. (35)

and (37) of ref. [6]. This modification was made to discourage large normalisation shifts in

the fit. It was partly motivated by claims (see section 6.7.4 on “Normalizations”, pg. 170

in ref. [14]) that, for many experiments, quoted normalisation uncertainties represent the

limits of a box-shaped distribution rather than the standard deviation of a Gaussian dis-

tribution; see further discussion in section 5.2.1 of ref. [6]. The quartic χ2 penalty term

is small if the fitted normalisation Nm ∈ [1 − σN
m , 1 + σN

m ], then it rises rapidly outside

this range, with the effect that the normalisation uncertainty is perhaps closer to being

described by a box-shaped distribution than by a Gaussian distribution (which would cor-

respond to a quadratic χ2 penalty term). Therefore, by default we take RN
m in eqs. (2.10)

and (2.11) to be uniformly distributed in the interval (−1, 1), so that the normalisation

Nm is uniformly distributed in the interval (1−σN
m , 1+σN

m ). However, we have also looked

at the effect of obtaining RN
m from a Gaussian distribution or alternatively simply fixing

RN
m = 0, i.e. the case of fixed data set normalisations. As expected, fixing normalisations

in the data replicas generally gives slightly smaller PDF uncertainties, while assuming nor-

malisation uncertainties to be Gaussian gives larger PDF uncertainties, particularly for

the up-valence distribution. However, it is perhaps inconsistent to assume Gaussian un-

certainties in the replica generation with a quartic penalty term in the χ2: changing to a

quadratic penalty term would allow more freedom in the fitted normalisations and so the

PDF parameters would move less, likely reducing the PDF uncertainty compared to the

– 4 –
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Figure 1. Comparison of Hessian and Monte Carlo results at the input scale of Q2
0 = 1GeV2 for the

(a) gluon distribution and (b) strange asymmetry. Both results allow n = 20 free PDF parameters

and do not apply a tolerance (i.e. T = 1 in the Hessian case). The best-fit (solid curves) and Hessian

uncertainty (shaded region) are in good agreement with the average and standard deviation (thick

dashed curves) of the Nrep = 40 Monte Carlo replica PDF sets (thin dotted curves).

case of a quartic penalty term. The default treatment of uniform RN
m ∈ (−1, 1) is probably

reasonable and is closer to the treatment of normalisation uncertainties in the χ2 definition

than a Gaussian RN
m . The Hessian error propagation via eigenvector PDF sets includes

theoretical uncertainties on the hadronisation corrections for the CDF jet data (treated

as a correlated systematic) and the small modification for the nuclear corrections (r1, r2,

r3) [6]. It is currently not obvious how to treat these theoretical uncertainties in the replica

generation, so the effect on PDF uncertainties will be assumed to be small.

We perform a separate PDF fit to each replica data set, then we can take the average

〈F 〉 and standard deviation ∆F of an observable F calculated with each PDF replica set,

Sk (k = 1, . . . , Nrep), that is,

〈F 〉 = 1

Nrep

Nrep
∑

k=1

F (Sk) , (2.13)

∆F =

√

Nrep

Nrep − 1

(

〈F 2〉 − 〈F 〉2
)

. (2.14)

The number of replicas Nrep is arbitrary, but in all cases we choose to generate Nrep = 40

replica PDF sets, where this number is chosen to be equal to the number of eigenvector

PDF sets mostly for practical reasons, i.e. to demonstrate that the implementation of the

Monte Carlo (MC) method does not necessarily require more computer resources than

the Hessian method. It could easily be increased in further studies, but first indications

are that Nrep = 40 is sufficiently large to avoid significant fluctuations. To allow a fair

comparison with the existing Hessian eigenvector PDF sets, we take n = 20 free PDF

parameters, i.e. 8 PDF parameters are held fixed at their global best-fit values, and we do

not apply a tolerance, i.e. we use the Hessian eigenvector PDF sets corresponding to T = 1

(see section 6.6 of ref. [6]). In figure 1 we show the input gluon distribution and strange

asymmetry for the Nrep = 40 MC replica PDF sets (thin dotted curves), and their average

– 5 –
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and standard deviation (thick dashed curves), and we compare to the best-fit and Hessian

uncertainty (solid curves and shaded region). We find good agreement of the Hessian and

MC results at all x and Q2 values, and for all parton flavours, as will be demonstrated

more explicitly in the next section.

Similar comparisons between Hessian and MC results were performed in a fit only

to the H1 data from HERA I on neutral- and charged-current e±p cross sections [15],

but it is still reassuring that we find a similar good agreement in the context of a more

complicated global fit. On the other hand, in section 6.6 of ref. [6] we also performed a fit

to a reduced data set consisting of a limited number of inclusive DIS data sets (BCDMS,

NMC, H1, ZEUS) with fairly conservative cuts of Q2 ≥ 9GeV2 and W 2 ≥ 15GeV2, where

eigenvector PDF sets were produced with n = 16 free PDF parameters for both a dynamic

tolerance and with T = 1. We find that there are some differences between the MC results

with n = 16 free PDF parameters and the Hessian results with T = 1. The approximate

equivalence between the Hessian and MC methods may break down, therefore, when fitting

a limited selection of discrepant data sets that are insufficient to unambiguously constrain

all fitted parameters.

3 Investigation of potential parameterisation bias

Recall the MSTW 2008 NLO PDF parameterisation at the input scale Q2
0 = 1GeV2 [6]:

xuv ≡ xu− xū = Au x
η1(1− x)η2(1 + ǫu

√
x+ γu x) , (3.1)

xdv ≡ xd− xd̄ = Ad x
η3(1− x)η4(1 + ǫd

√
x+ γd x) , (3.2)

xS ≡ 2xū+ 2xd̄+ xs+ xs̄ =AS xδS (1− x)ηS (1 + ǫS
√
x+ γS x) , (3.3)

x∆ ≡ xd̄− xū =A∆ xη∆(1− x)ηS+2(1 +γ∆ x+ δ∆ x2) , (3.4)

xg = Ag x
δg (1− x)ηg (1 + ǫg

√
x+ γg x) +Ag′ x

δg′ (1− x)ηg′ , (3.5)

xs+ xs̄ =A+ xδS (1− x)η+(1 + ǫS
√
x+ γS x) , (3.6)

xs− xs̄ =A− x0.2(1− x)η−(1− x/x0) . (3.7)

The parameters Au, Ad, Ag and x0 were fixed by enforcing number- and momentum-sum

rule constraints, while the other parameters were allowed to go free to determine the overall

best fit. The 20 highlighted (red) parameters were those allowed to go free when producing

the eigenvector PDF sets, where the other 8 (blue) parameters were held fixed, as for

the MC results in the previous section. However, this is not in fact necessary in the MC

approach where it is only needed to find the best fit for each replica data set, and the

Hessian matrix is not used for error propagation. Therefore, we can perform MC replica

fits with all 28 free parameters to examine the effect on PDF uncertainties of the greater

freedom in parameterisation, and to explore the extent that the Hessian uncertainties are

limited by the restricted parameterisation.

Recall [6] that the reason to freeze several parameters before applying the Hessian

method was to reduce the large correlations between some parameters, which would lead

– 6 –
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to severe breaking of the quadratic behaviour of ∆χ2, meaning that linear error propagation

would not be applicable. (A similar procedure was used in the CTEQ global fits; see, for

example, section 5 of ref. [16].) We observed some departure from the ideal quadratic

behaviour of ∆χ2 even with only 20 parameters; see figures 5 and 6 of ref. [6]. However,

even with all 28 parameters free, the Hessian matrix is generally still positive-definite

(has positive eigenvalues) and therefore we can still be relatively confident that the best

fit is correctly determined. Note that we use the Levenberg-Marquardt algorithm for

χ2-minimisation, which combines the advantages of the inverse-Hessian method and the

steepest-descent method, and therefore simply finding the best fit is less reliant on accurate

knowledge of the Hessian matrix compared to subsequent error propagation using the

Hessian method.

In figure 2 we show percentage uncertainties at the input scale Q2
0 = 1GeV2, and

in figure 3 we show percentage uncertainties after evolving to Q2 = (100GeV)2. We

show only the uncertainties since the MC average is very close to the Hessian best-fit,

with residual differences likely explained by statistical fluctuations. Again the MC un-

certainties with n = 20 input PDF parameters are in good agreement with the Hessian

uncertainties with ∆χ2 = 1, and both are much smaller than the 68%C.L. uncertainties

including the dynamic tolerance. We show the effect of moving to n = 28 input PDF

parameters, which gives significantly larger uv and dv uncertainties mainly at low x values

(removing some unusual shapes in the x dependence) and slightly larger gluon uncertain-

ties around x ∼ 0.05 in figure 2(f) and around x ∼ 0.01 in figure 3(f), but in all cases

the MC uncertainties are still much smaller than the Hessian uncertainties at 68%C.L.

One can see from the equations above that in going from a total of 20 → 28 input PDF

parameters, the number of free parameters for both xuv and xdv goes from 3 → 4, for

xS (≡ 2xū + 2xd̄ + xs + xs̄) goes from 3 → 5, and for xg goes from 4 → 7. While

there is perhaps some degree of parameterisation bias in the valence-quark distributions,

the insensitivity of the sea-quark and gluon distributions to the relatively large increase

in the number of free parameters suggests that parameterisation bias is likely to be small

in those cases. Of course, an exception is the strange-quark and -antiquark distributions

which are certainly constrained by the choice of parameterisation outside the limited data

region (0.01 . x . 0.2) of the CCFR/NuTeV dimuon cross sections. For example, the

low-x behaviour of s and s̄ is assumed to be the same as for ū and d̄, as suggested by argu-

ments based on both Regge theory and perturbative QCD (see discussion in section 6.5.5

of ref. [6]).

The study of potential parameterisation bias presented here is indicative rather than

exhaustive. It could be followed up by a more involved study, for example, using Chebyshev

polynomials along the lines of refs. [17, 18]. However, switching to an extremely flexible

parameterisation brings the danger of fitting the statistical fluctuations of the data unless

some method is used to enforce smoothness. We note that the limiting power-law behaviour

as x → 0 and x → 1 is well-motivated by Regge theory and counting rules, respectively,

and it is difficult to perceive a sensible alternative. More discussion and justification for

the MSTW 2008 input parameterisation was given in section 6.5 of ref. [6].
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Figure 2. Effect of n = 20 → 28 parameters on percentage PDF uncertainties at Q2 = 1GeV2.

– 8 –



J
H
E
P
0
8
(
2
0
1
2
)
0
5
2

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-5

-4

-3

-2

-1

0

1

2

3

4

5

2 GeV4 = 102Up valence distribution at Q

MSTW 2008 NLO (68% C.L.)
 = 1)2χ∆MSTW 2008 NLO (

 = 40, n = 20 params.repN
 = 40, n = 28 params.repN

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a)

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-5

-4

-3

-2

-1

0

1

2

3

4

5

2 GeV4 = 102Down valence distribution at Q

MSTW 2008 NLO (68% C.L.)
 = 1)2χ∆MSTW 2008 NLO (

 = 40, n = 20 params.repN
 = 40, n = 28 params.repN

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b)

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-3

-2

-1

0

1

2

3

2 GeV4 = 102Up antiquark distribution at Q

MSTW 2008 NLO (68% C.L.)
 = 1)2χ∆MSTW 2008 NLO (

 = 40, n = 20 params.repN
 = 40, n = 28 params.repN

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-3

-2

-1

0

1

2

3

(c)

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-3

-2

-1

0

1

2

3

2 GeV4 = 102Down antiquark distribution at Q

MSTW 2008 NLO (68% C.L.)
 = 1)2χ∆MSTW 2008 NLO (

 = 40, n = 20 params.repN
 = 40, n = 28 params.repN

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-3

-2

-1

0

1

2

3

(d)

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-3

-2

-1

0

1

2

3

2 GeV4 = 102Strange quark distribution at Q

MSTW 2008 NLO (68% C.L.)
 = 1)2χ∆MSTW 2008 NLO (

 = 40, n = 20 params.repN
 = 40, n = 28 params.repN

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-3

-2

-1

0

1

2

3

(e)

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 GeV4 = 102Gluon distribution at Q

MSTW 2008 NLO (68% C.L.)
 = 1)2χ∆MSTW 2008 NLO (

 = 40, n = 20 params.repN
 = 40, n = 28 params.repN

x
-510 -410 -310 -210 -110

P
er

ce
n

ta
g

e 
u

n
ce

rt
ai

n
ty

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(f)

Figure 3. Effect of n = 20 → 28 parameters on percentage PDF uncertainties at Q2 = (100GeV)2.
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4 Fits to restricted data sets using data replicas

Although we see little evidence for significant parameterisation bias in the MSTW 2008

global fit, this might not be true for some “non-global” fits which tend to be constrained by

parameterisation choices in the absence of relevant data. For example, the input parame-

terisation at Q2
0 = 1.9GeV2 in the HERAPDF1.0 [19] or HERAPDF1.5 NLO [20] analyses

takes the form:

xuv = Auv x
Bqv (1− x)Cuv (1 + Euv x

2) ,

xdv = Adv x
Bqv (1− x)Cdv ,

xū = Aq̄ x
Bq̄(1− x)Cū ,

xd̄ = Aq̄ x
Bq̄(1− x)Cd̄ ,

xs̄ = 0.45xd̄ ,

xs = xs̄ ,

xg = Ag x
Bg(1− x)Cg .

There are only 10 parameters used to obtain the central fit and “experimental” uncer-

tainties, although the more recent HERAPDF1.5 NNLO [21] analysis introduces 4 more

parameters (2 for g and 1 each for uv, dv). The HERAPDF analyses additionally include

“model” and “parameterisation” uncertainties that can be much larger than the “experi-

mental” uncertainties. For example, quantities sensitive to the high-x gluon distribution

have a very large “model” uncertainty in the HERAPDF1.5 NNLO analysis due to variation

of the minimum Q2 cut [22]. Nevertheless, it is interesting to investigate the potentially

more realistic constraint arising only from HERA data with a flexible parameterisation; see

also similar studies by the NNPDF Collaboration [23]. This would be difficult to achieve

in the Hessian method where several parameters would need to be held fixed to use the

covariance matrix for error propagation, but it is straightforward using the MC method.

We fit subsets of the global data included in the MSTW 2008 NLO analysis [6], specifically

(i) excluding all HERA data (neutral-current e±p and charged-current e+p cross sections,

F charm
2 , and inclusive jet production in DIS), (ii) including only HERA data, (iii) perform-

ing a “collider” fit meaning data from HERA and the Tevatron (inclusive jet production,

the W → ℓν charge asymmetry, and the Z rapidity distribution) with no fixed-target data.

The HERA-only fit uses the older separate H1 and ZEUS inclusive cross sections compared

to the more precise combined HERA I data [19] used in the HERAPDF fits. On the other

hand, the public HERAPDF fits [19–21] do not use data on F charm
2 or jet production. In

all cases we use the MC method with n = 28 free parameters wherever possible. However,

for the HERA-only and HERA+Tevatron fits, there is no constraint at all on the strange

asymmetry since the CCFR/NuTeV dimuon cross sections are missing, so we fix s − s̄ at

the global best-fit value, leaving n = 26 free parameters. The percentage uncertainties on

the PDFs at Q2 = (100GeV)2 from the various fits are shown in figure 4. The results

reflect what might näıvely be expected. For example, removing HERA data gives a huge

increase in the small-x uncertainties for the sea-quarks and gluon, but the valence-quark

uncertainties are almost unchanged. With only HERA data, the gluon and antiquarks are
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Figure 4. Effect on percentage PDF uncertainties of fitting subsets of MSTW 2008 global data.

still well-constrained at small x, but not at large x, and there are huge uncertainties in

the valence- and strange-quark distributions. Adding the Tevatron data helps, but the

collider-only uncertainty is still much larger than in the global fit, so really we need data

from HERA, the Tevatron and the fixed-target experiments to get a meaningful result. The

corresponding ratios to the global fit are shown in figure 5. Here, we see that the uncer-
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Figure 5. Effect on PDFs of fitting subsets of MSTW 2008 global data.

tainty bands from fits to subsets of the global data do not always overlap with those from

the global fit, implying some tension between the different data sets, and suggesting that

some kind of error inflation (or tolerance) is necessary. A similar exercise was performed

in the MSTW 2008 paper [6] to a “reduced” data set, with a slightly more constrained

parameterisation, and we find similar results if fitting the same “reduced” data set using

the MC method.
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5 Fits to idealised consistent and inconsistent pseudodata

As a further exercise to examine potential data set inconsistency within the global fit, we

generate idealised pseudodata from the best-fit theory predictions, i.e. we replace Dm,i by

Tm,i on the right-hand side of eqs. (2.10) and (2.11), where Tm,i are the theory predictions

evaluated using the global best-fit parameters. The pseudodata are then simply given by the

best-fit theory predictions with appropriate Gaussian noise added, and with uncertainties

given by the genuine data uncertainties. We can then introduce deliberate inconsistencies

into this idealised pseudodata and investigate the effect on the fitted PDFs. We choose

the following deliberate inconsistencies, intended to simulate realistic, if somewhat large,

incompatibilities that could potentially be present in the genuine data:

• We introduce a Q2-dependent offset for the H1 and ZEUS inclusive neutral-current

reduced cross sections, such that the pseudodata are multiplied by a factor of {1 ±
0.005 log[Q2/(10GeV2)]}, with the “+” sign for H1 and the “−” sign for ZEUS.

• We generate the pseudodata for the CDF and DØ inclusive jet cross sections with a

scale choice µR = µF = pT /2, but fit it with µR = µF = pT .

• We normalise the CCFR/NuTeV dimuon cross sections downwards by 10%.

• We normalise the NuTeV/CHORUS xF3 structure functions upwards by 5%.

• We introduce a rapidity-dependent offset for the CDF Z rapidity distribution, such

that the pseudodata are multiplied by a factor of (1 + 0.03 yZ).

• We introduce an x-dependent offset for the BCDMS/NMC/SLAC/E665 deuteron

structure functions, intended to mimic a possible deuteron correction, such that the

F d
2 data are multiplied by a factor of

f(x) =

{

(1 + 0.005)[1− 0.003 log2(x/x1)] : x < x1

(1 + 0.005)[1− 0.018 log2(x/x1) + 3 · 10−8 log20(x/x1)] : x ≥ x1
,

where x1 = exp(−2.5) ≃ 0.0821.

• We introduce a Q2-dependent offset for the BCDMS F p
2 and F d

2 structure functions,

such that the pseudodata are multiplied by a factor of {1 + 0.01 log[Q2/(1GeV2)]}.

In figures 6 and 7 we show the effect of fitting the genuine data, then the consistent or

inconsistent idealised pseudodata, in each case using MC error propagation with Nrep = 40

replica data sets and n = 20 input PDF parameters, and we compare to the standard

MSTW 2008 NLO fit with dynamic tolerance. Despite the central values of the PDFs from

the inconsistent fit shifting by significant amounts, the percentage uncertainties in figure 7

are remarkably almost identical whether fitting either the genuine data, the consistent pseu-

dodata or the inconsistent pseudodata. The MC fit to perfectly consistent pseudodata gives

χ2
global/Npts. = 0.98±0.03, which by construction is exactly unity up to the statistical fluc-

tuation, and similarly for the individual data sets included in the global fit; see table 1. On
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Figure 6. Effect on PDFs of fitting consistent or inconsistent idealised pseudodata.

the other hand, the MC fit to the inconsistent pseudodata gives χ2
global/Npts. = 1.07±0.03,

so the fit quality has only deteriorated slightly, despite the central values of some PDFs

shifting well outside their original uncertainty band; see figure 6. This result is in contradic-

tion to what seems to be a widely held view that a fit to inconsistent data should lead to a

χ2/Npts. ≫ 1. The values of the χ2/Npts. in table 1 deviate further from unity for a few in-

dividual data sets such as BCDMS F d
2 , the NMC F d

2 /F
p
2 ratio, NuTeV xF3 and the CDF Z
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Figure 7. Effect on percentage PDF uncertainties of fitting consistent or inconsistent pseudodata.

rapidity distribution, but not by such large amounts that the inconsistent fit would not be

judged to be an “acceptable” fit. Despite the fairly significantQ2-dependent offset of the H1

and ZEUS inclusive cross sections, amounting to almost 4% at Q2 = 500GeV2, there is only

a slight increase in the χ2 values in going from the consistent to the inconsistent fit. Simi-
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Data set MSTW08 Fit consistent pseudodata Fit inconsistent pseudodata

BCDMS µp F2 1.12 0.96± 0.13 1.10± 0.15

BCDMS µd F2 1.26 0.99± 0.13 1.44± 0.17

NMC µp F2 0.98 0.96± 0.12 0.97± 0.12

NMC µd F2 0.83 1.00± 0.12 1.05± 0.13

NMC µn/µp 0.88 1.02± 0.12 1.25± 0.13

E665 µp F2 1.08 0.99± 0.18 0.99± 0.18

E665 µd F2 1.01 1.00± 0.18 1.02± 0.18

SLAC ep F2 0.80 0.97± 0.22 0.98± 0.23

SLAC ed F2 0.78 0.98± 0.16 1.03± 0.18

NMC/BCDMS/SLAC FL 1.22 1.04± 0.27 1.04± 0.27

E866/NuSea pp DY 1.24 0.92± 0.10 0.98± 0.10

E866/NuSea pd/pp DY 0.93 0.86± 0.35 0.96± 0.35

NuTeV νN F2 0.92 0.93± 0.19 1.07± 0.19

CHORUS νN F2 0.62 1.01± 0.24 1.08± 0.27

NuTeV νN xF3 0.89 0.99± 0.19 1.42± 0.22

CHORUS νN xF3 0.93 0.89± 0.21 1.14± 0.25

CCFR νN → µµX 0.77 0.98± 0.14 1.03± 0.14

NuTeV νN → µµX 0.46 0.96± 0.16 1.00± 0.17

H1 MB 99 e+p NC 1.15 0.87± 0.44 0.92± 0.44

H1 MB 97 e+p NC 0.66 0.99± 0.20 1.01± 0.20

H1 low Q2 96–97 e+p NC 0.56 1.00± 0.15 1.03± 0.15

H1 high Q2 98–99 e−p NC 0.97 0.98± 0.12 1.00± 0.12

H1 high Q2 99–00 e+p NC 0.89 1.02± 0.10 1.05± 0.10

ZEUS SVX 95 e+p NC 1.16 0.94± 0.25 0.94± 0.25

ZEUS 96–97 e+p NC 0.60 1.01± 0.11 1.04± 0.11

ZEUS 98–99 e−p NC 0.59 0.98± 0.14 1.00± 0.14

ZEUS 99–00 e+p NC 0.70 1.02± 0.16 1.05± 0.16

H1 99–00 e+p CC 1.04 1.00± 0.23 1.03± 0.24

ZEUS 99–00 e+p CC 1.27 0.95± 0.20 1.02± 0.21

H1/ZEUS ep F charm
2 1.29 1.00± 0.12 1.00± 0.12

H1 99–00 e+p incl. jets 0.78 1.00± 0.30 1.03± 0.30

ZEUS 96–97 e+p incl. jets 0.99 1.07± 0.26 1.07± 0.25

ZEUS 98–00 e±p incl. jets 0.56 0.95± 0.25 0.98± 0.26

DØ II pp̄ incl. jets 1.04 0.96± 0.14 1.03± 0.15

CDF II pp̄ incl. jets 0.73 1.01± 0.22 1.08± 0.23

CDF II W → ℓν asym. 1.32 1.00± 0.30 1.03± 0.33

DØ II W → ℓν asym. 2.51 0.94± 0.40 1.08± 0.47

DØ II Z rap. 0.68 1.05± 0.29 1.07± 0.30

CDF II Z rap. 1.70 1.05± 0.29 1.62± 0.43

All data sets 0.93 0.98± 0.03 1.07± 0.03

Table 1. Values of χ2/Npts. for the data sets in various NLO global fits. The “MSTW08” column

shows the best-fit numbers [6]. The pseudodata numbers in the other two columns are the average

and standard deviation of the χ2/Npts. over Nrep = 40 replica fits. See ref. [6] for data references.

larly, by looking at the MSTW08 fit to the genuine data in table 1, there are only a few in-

dividual data sets with values of χ2/Npts. significantly above unity, perhaps giving the false

impression that there is not a large degree of incompatibility between individual data sets.
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Figure 8. Effect on PDFs of fitting consistent idealised pseudodata, either collider-only or global.

In figures 8 and 9 we show the result of another study using the same consistent or

inconsistent idealised pseudodata. First we show the PDFs obtained from fitting only the

collider (HERA+Tevatron) subset of the pseudodata, then we show the effect of adding

the remaining fixed-target pseudodata. In the “theory” case in figure 8, the fixed-target

pseudodata are perfectly consistent with the collider pseudodata (by construction), so the
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Figure 9. Effect on PDFs of fitting inconsistent idealised pseudodata, either collider-only or global.

global fit gives PDFs consistent with the collider fit, but with much smaller uncertainties.

This is not true for the “inconsistent” case in figure 9, where the global fit gives PDFs often

lying outside the uncertainty band for the collider fit. The latter situation arises when

fitting the genuine data in figure 5, implying that the real collider data are inconsistent

with the real fixed-target data. Note that the peculiar behaviour at large x in figures 8(c,d)
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and 9(c,d) is due to the antiquark distributions going negative in the collider fit at high x

where there is no data constraint.

The conclusion of these studies is that defining experimental uncertainties via

∆χ2
global = 1 is overly optimistic for global PDF analysis and that the more conserva-

tive “dynamic” tolerance [6] based on a “hypothesis-testing” criterion [12] is much more

appropriate.1 As a final example of a situation where we believe it would make sense to

introduce a tolerance to account for a potential discrepancy between data sets, consider the

recent ATLAS determination [25] of the ratio of the strange-to-down sea-quark distribu-

tions, rs(x,Q
2) ≡ 0.5(s+ s̄)/d̄, from a fit to inclusive W± and Z differential cross sections

at the LHC, combined with inclusive DIS data from HERA. This ratio took the surprising

values of

rs(x = 0.023, Q2
0 = 1.9GeV2) = 1.00+0.25

−0.28 and rs(x = 0.013, Q2 = M2
Z) = 1.00+0.09

−0.10 ,

where the rs uncertainty is dominated by the experimental PDF uncertainty, determined

using ∆χ2 = 1, of ±0.20 and ±0.07, respectively. These values being consistent with unity

indicate no strange suppression, contrary to previous determinations from CCFR/NuTeV

dimuon cross sections (νN → µµX), where the strange-quark distributions are suppressed

to about half of the d̄ and ū distributions at the lower Q2 value. Even the HERA DIS

data included in the ATLAS analysis [25] shows some tension with the result of no strange

suppression; the χ2 for the HERA DIS data increases by 2.9 units in going from fixed

rs(x,Q
2
0) = 0.5 to free rs with two extra parameters. The MSTW 2008 NNLO analysis [6],

which included the CCFR/NuTeV dimuon cross sections, found central values and 68%C.L.

PDF uncertainties (including the “dynamic” tolerance) of

rs(x = 0.023, Q2 = 1.9GeV2) = 0.48±0.04 and rs(x = 0.023, Q2 = M2
Z) = 0.79±0.02 .

Rescaling the experimental PDF uncertainty of the ATLAS determination [25] by a toler-

ance of ≈ 3, corresponding to ∆χ2 ≈ 9, would be enough to bring it into agreement with

the MSTW08 result. The conclusion that the uncertainty on rs in the ATLAS determina-

tion [25] has been underestimated was also reached by the NNPDF Collaboration [26].

6 Random PDFs generated in space of fit parameters

Given that we have now established that we need an appropriate tolerance, the question

arises of how to include this into the MC method. We can introduce a tolerance in the

generation of the data replicas simply by rescaling all experimental errors in eqs. (2.10)

and (2.11) by 〈t〉 ≈ 〈T 〉 ≈ 3, corresponding to the average tolerance for 68%C.L. un-

certainties. We find that this simple approach, using n = 20 input PDF parameters,

reproduces the Hessian uncertainties with a dynamic tolerance surprisingly well for most

parton flavours and kinematic regions. However, it is not possible to implement exactly

the “dynamic” tolerance (different for each eigenvector direction) in the MC method, since

no reference is being made to the eigenvectors of the covariance matrix.

1A similar conclusion has been reached using very different arguments in ref. [24].
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Instead of sampling the probability density by working in the space of data, we can

produce random PDFs directly in the space of fit parameters.2 In fact, this was done in

the original work of Giele and Keller [3] using the covariance matrix of parameters from

Alekhin’s fit [27]. A convenient way to generate the random PDFs is to use the eigenvectors

of the covariance matrix. Recall from eq. (2.4) that the parameter displacements from the

global minimum can be expanded in a basis of the rescaled eigenvectors eik ≡ √
λk vik,

that is,

ai − a0i =
n
∑

j=1

eij zj , (6.1)

with n = 20 the number of input PDF parameters. Usually the ±kth eigenvector PDF set

is defined by taking zj = (±t±j )δjk in eq. (6.1), that is, the usual eigenvector PDF sets are

generated with input parameters:

ai(S
±
k ) = a0i ± t±k eik (k = 1, . . . , n) , (6.2)

with t±k adjusted to give the desired T±
k = (∆χ2

global)
1/2. However, we can instead randomly

sample the parameter space such that the kth random PDF set is generated with input

parameters obtained by taking zj = (±t±j )|Rjk| in eq. (6.1), that is,

ai(Sk) = a0i +
n
∑

j=1

eij
(

± t±j
)

|Rjk| (k = 1, . . . , Npdf) , (6.3)

where Rjk is a Gaussian-distributed random number of mean zero and variance one, and

either +t+j or −t−j is chosen depending on the sign of Rjk. There are therefore n =

20 random numbers Rjk (j = 1, . . . , n) associated with the kth random PDF set (k =

1, . . . , Npdf). The number of random PDF sets Npdf is arbitrary, but again we choose

Npdf = 40 mostly for practical reasons. Each random PDF set has equal probability defined

by the covariance matrix of fit parameters, and therefore statistical quantities such as the

mean and standard deviation can easily be calculated using formulae such as eqs. (2.13)

and (2.14) with the obvious replacement Nrep → Npdf . A comparison of the average and

standard deviation of Npdf = 40 PDFs constructed with eq. (6.3) to the best-fit and Hessian

uncertainty is made in figure 10. There is generally good agreement, with some shift of the

average compared to the best-fit that can be attributed mostly to asymmetric tolerance

values (t+j 6= t−j ). We have verified this explanation by repeating the same studies without

a tolerance (T±
j = 1). Alternative ad hoc treatments of the asymmetric tolerance values

are possible. For example, if t+j > t−j proportionally more random PDF sets could be

produced for a “−” sign than for a “+” sign in eq. (6.3) so that the average would be closer

to the best-fit, or one could simply symmetrise with the replacement t±j → (t+j + t−j )/2 in

eq. (6.3). However, since the degree of asymmetry is generally small, we will not explore

these possibilities in practice. As some measure of the amount of statistical fluctuation,

we produce another Npdf = 40 PDFs constructed with eq. (6.3) using different random

numbers Rjk. The results are shown in figures 11 and 12 and we conclude that Npdf = 40

2We thank H. Prosper for making this suggestion.

– 20 –



J
H
E
P
0
8
(
2
0
1
2
)
0
5
2

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 GeV4 = 102Up valence distribution at Q

MSTW 2008 NLO (68% C.L.)

40 random PDF sets
Average and s.d. over 40

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

(a)

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

2 GeV4 = 102Down valence distribution at Q

MSTW 2008 NLO (68% C.L.)

40 random PDF sets
Average and s.d. over 40

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

(b)

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 GeV4 = 102Up antiquark distribution at Q

MSTW 2008 NLO (68% C.L.)

40 random PDF sets
Average and s.d. over 40

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

(c)

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 GeV4 = 102Down antiquark distribution at Q

MSTW 2008 NLO (68% C.L.)

40 random PDF sets
Average and s.d. over 40

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

(d)

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

2 GeV4 = 102Strange quark distribution at Q

MSTW 2008 NLO (68% C.L.)

40 random PDF sets
Average and s.d. over 40

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

(e)

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

2 GeV4 = 102Gluon distribution at Q

MSTW 2008 NLO (68% C.L.)

40 random PDF sets
Average and s.d. over 40

x
-510 -410 -310 -210 -110

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

(f)

Figure 10. Npdf = 40 random sets generated with eq. (6.3) as a ratio to the best-fit PDF set.

is enough to avoid significant fluctuations, although there is some moderate variation due

to the limited statistics (for example, in dv at x ∼ 0.1).

In principle, there is some amount of non-linearity in going from the input PDF pa-

rameters ai to the input PDFs f(x,Q2
0), then to the evolved PDFs f(x,Q2) and to physical

observables F calculated using these evolved PDFs (for example, hadronic cross sections

with a quadratic PDF dependence). However, we find that, in practice, the apparent de-
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Figure 11. Comparison of best-fit and Hessian uncertainty to the average and standard deviation

of two sets of Npdf = 40 PDFs generated with different random parameters given by eq. (6.3) and

one set of Npdf = 1000 random PDFs generated with eq. (6.4).

gree of non-linearity is small, an assumption that is inherent in the Hessian method for

propagating uncertainties. Making this assumption of linearity, an alternative and simpler

way to generate random PDFs is to work with the existing eigenvector PDF sets directly

at the level of the quantity of interest F such as the evolved PDF or the hadronic cross
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Figure 12. Similar to figure 11 but percentage uncertainties rather than the ratio to the best-fit.

section. Then we can build random values of F according to3

F (Sk) = F (S0) +
n
∑

j=1

[

F (S±
j )− F (S0)

]

|Rjk| (k = 1, . . . , Npdf) , (6.4)

3Cf. the studies of F. De Lorenzi: see eq. (3.1) of ref. [28] or eq. (6.1) of ref. [29].
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where S+
j or S−

j is chosen depending on the sign of Rjk. Note that for the case F = ai in

eq. (6.4), then ai(S0) ≡ a0i and inserting ai(S
±
j ) from eq. (6.2) then we recover eq. (6.3).

This construction of a random F (Sk) using eq. (6.4) can be done “on the fly” for an

almost arbitrarily large value of Npdf , after the initial computation of F (S0) and F (S±
j )

(j = 1, . . . , n) requiring only 2n + 1 (= 41 for the MSTW 2008 PDFs) evaluations of F .

We choose Npdf = 1000 for the results shown in figures 11 and 12, although the results are

similar with a much smaller value. Here we take “F” in eq. (6.4) to be the evolved PDF

at Q = 100GeV for the particular parton flavour shown in each plot, then we construct

Npdf = 1000 values of F (Sk) and take the average and standard deviation, finding good

agreement with the best-fit and Hessian uncertainty. Again, the slight shift of the average

compared to the best-fit can be attributed mostly to asymmetric tolerance values, which

we confirm by repeating the same exercise starting from eigenvector PDF sets generated

with ∆χ2
global = 1. As already mentioned, ad hoc modifications to the procedure could be

adopted to better account for asymmetric tolerance values, but we choose not to explore

these possibilities in this work given the relatively small size of the effect. For example, a

symmetrised version of eq. (6.4) could be obtained using

F (Sk) = F (S0) +
1

2

n
∑

j=1

∣

∣F (S+
j )− F (S−

j )
∣

∣Rjk (k = 1, . . . , Npdf) , (6.5)

analogous to the symmetric formula for PDF uncertainties given in eq. (2.9).

We note that an unsuccessful attempt to generate random PDFs directly in the space

of fit parameters was made in section 6.5 of ref. [30]. This attempt was flawed in that all

random PDF sets were constructed with the unnecessary constraint of a fixed ∆χ2 = 100,

with the n parameters distributed on the surface of an n-dimensional hypersphere using

the eigenvectors as basis vectors, leading to an envelope of the random PDF sets covering

a much smaller range than the usual Hessian uncertainty. By contrast, if we generate

random PDF sets according to eq. (6.3), then the ∆χ2, or equivalently t±j , is only used to

define the distance along a particular eigenvector direction. At a general point in parameter

space, given by stepping along all eigenvector directions by a random amount, the ∆χ2

is irrelevant and it can be very large. It is not necessary or desirable that each random

PDF set should have ∆χ2 below a certain value. A fixed ∆χ2 will only be recovered in the

specific (and very unlikely) case that |Rjk| = δjk, then eq. (6.3) reduces to eq. (6.2).

Another argument that a Monte Carlo approach in the space of fit parameters involves

exploring a space too wide to be sampled efficiently with a small number of random PDFs

was made in section 3.2.1 of ref. [31]. There it was argued that if the probability distribution

for each parameter is given as a histogram with three bins, say the one-sigma region

around the central value and the two outer regions, then näıvely one might expect the

need to randomly sample 3n & 3 × 109 PDF sets for n = 20 free parameters. However,

the n parameters are certainly not independent, and the complete correlation information

is provided by the covariance matrix obtained from the global fit. Working in the basis

of eigenvectors then provides an optimally efficient way to sample the parameter space

randomly along each eigenvector direction.
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Figure 13. Convergence of average and standard deviation of Npdf random predictions as a

function of Npdf , each time adding one more random prediction to the Npdf − 1 previous random

predictions, normalised to the best-fit prediction and compared to the Hessian uncertainty.

Nevertheless, it is instructive to perform a numerical exercise in order to explicitly

demonstrate roughly how many random predictions are necessary to adequately sample the

parameter space. We consider the 7TeV LHC total cross sections for four typical processes

corresponding to inclusive production of (a) Z0 bosons, (b) W+ relative to W− bosons,

(c) top-pairs and (d) Standard Model Higgs bosons with MH = 120GeV from gluon-

gluon fusion. These four processes are chosen to sample a variety of parton flavours and

momentum fractions x. We use the existing NLO calculations from ref. [1] with the MSTW

2008 NLO best-fit and Hessian eigenvector PDF sets at 68%C.L. For each of the four

processes, we generate the minimal Npdf = 2 random predictions computed using eq. (6.5)

for F = {σZ0 , σW+/σW− , σtt̄, σH} and calculate the average and standard deviation. Then

the number of random predictions, Npdf , is incremented by one, and the average and

standard deviation recomputed, until Npdf = 1000. The results are shown in figure 13

normalised to the best-fit prediction and compared with the symmetric Hessian uncertainty

of eq. (2.9). We use the symmetrised formulae of eqs. (2.9) and (6.5) to allow a direct

comparison between the best-fit prediction and the average over the random predictions,
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Figure 14. Convergence of average and standard deviation of Npdf random predictions as a

function of Npdf , each time generating Npdf independent random predictions with different random

numbers, normalised to the best-fit prediction and compared to the Hessian uncertainty.

without the complications arising from asymmetric tolerance values discussed elsewhere.

We show a similar set of plots in figure 14 where each value of Npdf now corresponds

to the average and standard deviation over Npdf independent random predictions. The

results for adjacent Npdf values therefore indicate the size of the statistical fluctuations,

which decrease going to larger Npdf values, but are still not completely negligible even for

Npdf ∼ 1000. However, although there is little computational overhead in taking Npdf

to be very large when the random predictions are generated “on the fly”, one would not

expect to see noticeable differences when Nrep is much larger than around 1000. In fact,

the statistical fluctuations are very small compared to the PDF uncertainty for Npdf & 100

and even Npdf = 40 may be sufficiently accurate for many practical purposes.

7 Reweighting to describe the LHC W → ℓν charge asymmetry data

Updating a PDF set with new data using a Bayesian reweighting method based on statis-

tical inference was originally proposed by Giele and Keller [3] and later developed further
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by the NNPDF Collaboration [32, 33]. Suppose we have a set of Npdf random PDFs {Sk}
with equal probability. It is irrelevant whether they are generated in the space of data

(section 2.2) or in the space of parameters (section 6). We can then apply the Bayesian

reweighting technique exactly as for the NNPDF sets. The key formulae are summarised

below, but we refer to refs. [32, 33] for the derivation and more details of the method. We

first compute the χ2
k for the new data set (comprising Npts. data points) using each Sk,

then we can calculate the mean value of any PDF-dependent quantity F (Sk) as:

〈F 〉old =
1

Npdf

Npdf
∑

k=1

F (Sk) , 〈F 〉new =
1

Npdf

Npdf
∑

k=1

wk(χ
2
k)F (Sk) , (7.1)

where the weights are given by

wk(χ
2
k) =

Wk(χ
2
k)

1
Npdf

∑Npdf

j=1 Wj(χ2
j )

, Wk(χ
2
k) ≡ (χ2

k)
1
2
(Npts.−1) exp

(

− 1

2
χ2
k

)

, (7.2)

with the denominator of wk(χ
2
k) ensuring the normalisation condition:

Npdf
∑

k=1

wk(χ
2
k) = Npdf . (7.3)

Note that the expression for the weights in eq. (7.2) differs from the original formula in

ref. [3] due to subtle arguments explained in ref. [32]. The standard deviation ∆F after

reweighting can be calculated using eq. (2.14) with the trivial replacement Nrep → Npdf

and using the weighted averages 〈F 2〉new and 〈F 〉new. The effective number of random

PDF sets left after reweighting, referred to as the “Shannon entropy” [32], is given by

Neff = exp

(

1

Npdf

Npdf
∑

k=1

wk ln

(

Npdf

wk

))

. (7.4)

As a simple application of this reweighting technique, we will consider the 7TeV LHC

data from the 2010 running period on the W → ℓν charge asymmetry from CMS [7] and

ATLAS [8]. The W → ℓν charge asymmetry is defined differentially as a function of the

pseudorapidity ηℓ of the charged-lepton from the W -boson decay, i.e.

Aℓ(ηℓ) =
dσ(ℓ+)/dηℓ − dσ(ℓ−)/dηℓ
dσ(ℓ+)/dηℓ + dσ(ℓ−)/dηℓ

. (7.5)

We will consider the CMS data [7] with charged-lepton transverse momentum cut of pℓT >

25GeV in both the electron (ℓ = e) and muon (ℓ = µ) channels. The ATLAS data [8]

combine the electron and muon channels with cuts of pℓT > 20GeV, missing transverse

energy 6Eν
T> 25GeV and transverse mass MT =

√

2pℓT 6Eν
T (1− cos∆φℓν) > 40GeV, where

∆φℓν is the azimuthal separation between the directions of the charged-lepton and neutrino.

The pseudorapidity distributions, dσ(ℓ±)/dηℓ, calculated from the public dynnlo code [34]

using the MSTW 2008 NLO best-fit PDFs with µR = µF = MW , are shown in figure 15(a,b)
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Figure 15. (a,b) dσ(ℓ±)/dηℓ distributions, (c,d) K-factors, (e,f) lepton charge asymmetry, for

kinematic cuts corresponding to the (a,c,e) CMS data [7] and (b,d,f) ATLAS data [8].

for (a) CMS cuts and (b) ATLAS cuts. For LO kinematics (pWT = 0) with zero W width

(ΓW = 0), then pℓT = 6Eν
T and MT = 2pℓT , and the predictions are identical for the CMS and

ATLAS cuts, but not after accounting for NLO and finite W width effects. In figure 15(c,d)

we define a K-factor by taking the ratio of the dynnlo histograms, then we fit to quartic
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polynomials in |ηℓ| to provide a convenient parameterisation and to smooth statistical

fluctuations from the vegas multidimensional integration. A fast calculation of the W →
ℓν charge asymmetry can then be obtained using a simple LO calculation with zero W

width (denoted “LEPTON”), including the parameterised K-factors for dσ(ℓ±)/dηℓ, making

the assumption that the K-factors are independent of the PDF choice. In figure 15(e,f)

we compare the LEPTON calculation, without and with the inclusion of K-factors, with

the dynnlo histograms, finding good agreement (by construction). It can be seen that

the NLO corrections and finite-width effects are very small over most of the |ηℓ| range.
The effect on the W → ℓν charge asymmetry of neglecting the PDF dependence of the K-

factors should then be completely negligible. We have also computed the NNLO corrections

using the dynnlo code and find them to be much smaller than the NLO corrections, but

we will consider only NLO QCD in making comparisons to data, as done elsewhere in

this paper.

We will focus on demonstrating the reweighting technique rather than aiming to make

an exhaustive study of the impact of the LHC data. With this aim in mind, we will

not consider in this work the 2010 CMS data with pℓT > 30GeV [7], the preliminary

CMS measurements using 2011 data with pµT > 25GeV [35] or peT > 35GeV [36], or

the recent LHCb measurements using 2010 data with pµT > {20, 25, 30}GeV [37]. The

ATLAS Collaboration [8] provide the differential cross sections, dσ(ℓ±)/dηℓ, separately

for W+ → ℓ+ν and W− → ℓ−ν̄ with the complete information on correlated systematic

uncertainties, which is potentially more useful for PDF fits than simply the asymmetry

Aℓ(ηℓ). A future study could perhaps investigate the use of reweighting with the ATLAS

W± (and Z/γ∗) differential cross sections rather than the asymmetry Aℓ(ηℓ). In this

study, we simply calculate the χ2
k values with all experimental uncertainties added in

quadrature.

In figure 16(a,b) we compare the (a) CMS and (b) ATLAS data on the W → ℓν

charge asymmetry to predictions using the MSTW 2008 NLO PDFs, firstly with the usual

best-fit and Hessian uncertainty. We then generate Npdf = 1000 random predictions for the

asymmetry by taking F = Aℓ(ηℓ) in eq. (6.4), and take the average and standard deviation,

giving results slightly different from the best-fit and Hessian uncertainty (mainly due to the

asymmetric tolerance values). The χ2 values of the average Aℓ(ηℓ), displayed in the plot

legends, are then slightly larger than the χ2 of the best-fit predictions. Next we compute

weights for each of the Npdf predictions according to eq. (7.2), then finally we plot the

weighted average and standard deviation in figure 16(a,b). The χ2 of the weighted average

Aℓ(ηℓ) improves significantly compared to the unweighted average. The effective number of

random predictionsNeff after reweighting, computed according to eq. (7.4), is about half the

original number for CMS and almost a quarter the original number for ATLAS. The most

significant change in the predictions after reweighting is for ηℓ ≈ 0 where Aℓ(ηℓ) depends

on the combination uv − dv at momentum fractions x slightly above x ∼ MW /
√
s ∼ 0.01.

In figure 16(c,d) we plot this combination for Q2 = (100GeV)2 for the same three sets of

predictions shown in figure 16(a,b). We compare the best-fit and Hessian uncertainty with

the unweighted/weighted average and standard deviation of Npdf = 1000 random PDFs

constructed by taking F = x(uv − dv)(x,Q
2) in eq. (6.4), with the same random numbers
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Figure 16. Lepton charge asymmetry Aℓ(ηℓ) predictions compared to (a) CMS [7] and (b) AT-

LAS [8] data, then change in uv − dv after reweighting using (c) CMS and (d) ATLAS data.

Rjk and weights wk used in figure 16(a,b). As expected from figure 16(a,b), the shift in

uv − dv is largest at x ∼ 0.01, and the average value after reweighting using the ATLAS

data even lies outside the original uncertainty band. There is also a distinct reduction in

the size of the uncertainty band after reweighting.

The procedure just described is not completely unambiguous. Alternative prescriptions

could be formulated which are equivalent in a linear approximation, but which might differ

due to some degree of non-linearity. For example, rather than starting by generating

random predictions for the asymmetry by taking F = Aℓ(ηℓ) in eq. (6.4), we could instead

generate Npdf = 1000 random PDF sets by taking F = xf(x,M2
W ) in eq. (6.4), where f =

{g, d, u, s, c, b, d̄, ū, s̄, c̄, b̄}, then calculate Aℓ(ηℓ) for each of these Npdf random PDF sets,

before calculating weights according to eq. (7.2) as before. This alternative method will

give slightly different results since Aℓ(ηℓ) depends on xf(x,M2
W ) in a non-linear manner. In

figure 17(a,b) we compare the distribution of weights wk computed using the two different

methods, using the same random numbers Rjk to allow a direct comparison of individual

weights with the same label k. The distribution of weights is very similar using the two
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Figure 17. Distributions of (a,b) wk, (c,d) χ2
k
/Npts., (e,f) P(α), for (a,c,e) CMS and (b,d,f)

ATLAS.

methods. The individual weights typically agree to within a few percent and differ by only

a few tens of percent in the worst cases. The values of Neff agree to the nearest integer and

the values of χ2/Npts. agree to two decimal places. The plots of figure 16 produced using

the alternative method are indistinguishable. We conclude that the degree of non-linearity
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is small and both techniques may be useful in practice. For example, it might be useful

to first generate Npdf = 1000 random PDF sets as grid files by taking F = xf(x,Q2) in

eq. (6.4), then these grid files can be processed in exactly the same way as the NNPDF

grid files. On the other hand, that method would require substantial disk storage and

would require the observable Aℓ(ηℓ) to be evaluated Npdf times, which is potentially time-

consuming. With the first method described above, it is unnecessary to store intermediate

grid files, and only 2n + 1 (= 41 for the MSTW 2008 PDFs) evaluations of Aℓ(ηℓ) are

needed for the best-fit and 2n eigenvector PDF sets, exactly as for the usual computation

of Hessian uncertainties. The first method will therefore be used for subsequent results.

The χ2 distribution of the new data set after reweighting can easily be histogrammed:

P(χ2
a < χ2 < χ2

b) =
1

Npdf

Npdf
∑

k=1

wk(χ
2
k)Θ(χ2

k − χ2
a)Θ(χ2

b − χ2
k) , (7.6)

where the χ2 distribution before reweighting is trivially obtained by setting all weights

wk equal to unity. Both these distributions are shown in figure 17(c,d). The plot legends

indicate the mean χ2 and the standard deviation. The reweighting procedure shifts the χ2

distribution so that larger weights are given to the random predictions with χ2
k/Npts. ∼ 1.

If we rescale the data uncertainties by a factor α, then the probability density for the

rescaling parameter α is given by [32]

P(α) ∝ 1

α

Npdf
∑

k=1

Wk

(

χ2
k

α2

)

, (7.7)

that is, the sum of the unnormalised weights given by eq. (7.2) with the replacement

χ2
k → χ2

k/α
2. The overall normalisation of eq. (7.7) can be determined from the condition

that the integral of P(α) over α gives unity. The probability distribution P(α) is shown in

figure 17(e,f). These plots suggest that the LHC data on Aℓ(ηℓ) are somewhat inconsistent

with the data in the MSTW 2008 NLO fit and that the uncertainties on the LHC Aℓ(ηℓ)

data should be rescaled by a factor 1.37 for CMS and 1.68 for ATLAS to achieve consistency,

where these are the most probable values of α. Conversely, a most probable value of α

much less than 1 would suggest that the experimental uncertainties are overestimated to

some extent. In that case, it might be desirable to repeat the reweighting procedure with

the replacement χ2
k → χ2

k/α
2 in eq. (7.2), where α is the most probable value.

It is clear (see, for example, the discussion in ref. [1]) that there is some considerable

tension between the LHC W → ℓν charge asymmetry data and some of the data already

included in the MSTW 2008 fit, such as the TevatronW → ℓν asymmetry, the NMC F d
2 /F

p
2

ratio, and the E866/NuSea Drell-Yan σpd/σpp ratio. Other tensions have been observed

with the more recent and precise Tevatron data on the W → ℓν charge asymmetry, and

partially resolved by more flexible nuclear corrections for deuteron structure functions [38]

and extended parameterisation choices for the functional form of the input PDFs. Indeed,

we note that the LHC asymmetry Aℓ(ηℓ) depends on valence-quark parameterisations near

x ∼ 0.01, and the studies in section 3 suggested that this is the single place where the

MSTW 2008 parameterisation is likely to be inadequate. Further attempts to resolve these
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tensions will be necessary for any future update of the MSTW 2008 fit. Therefore, the

reweighting technique is instructive, but does not indicate the ultimate impact of includ-

ing the new data in a global PDF fit after closer scrutiny of potential sources of tension.

Nevertheless, we hope that the new method presented in this section of generating ran-

dom predictions on-the-fly from the existing eigenvector PDF sets, followed by subsequent

Bayesian reweighting, will be useful for a wide range of potential studies by third parties

from both the experimental and theoretical communities.

8 Conclusions

We have made a first study of the Monte Carlo approach to experimental uncertainty

propagation in the context of the MSTW 2008 NLO PDF fit [6], either using data replicas

or alternatively working directly in parameter space. The main findings of this study are

as follows:

• The Hessian method and the Monte Carlo method using data replicas are approxi-

mately equivalent in a global fit when using the same parameterisation and (lack of)

tolerance, i.e. ∆χ2 = 1. Similar findings have previously been observed in a fit only

to H1 data [15].

• The Monte Carlo approach using data replicas is better suited to exploring parame-

terisation bias due to the potentially restrictive input functional form. Increasing the

number of parameters from 20 → 28 has only a small effect on PDF uncertainties,

with the exception of the valence-quark distributions at low x values where there is

a moderate increase in PDF uncertainties. This gives some confidence that, in gen-

eral, PDF uncertainties in the MSTW 2008 fit are not significantly underestimated

due to parameterisation bias, with the possible exception of the strange-quark and -

antiquark distributions where the imposed parameterisation constraint is more severe

due to the lack of available data constraints.

• The previous findings raise the question why the MSTW/CTEQ uncertainties (with

a tolerance) are similar to the NNPDF uncertainties (without a tolerance) [1], if

the tolerance in the former is not compensating for the more restricted functional-

form parameterisation rather than the more flexible neural-network parameterisa-

tion. One possibility is that the procedural uncertainties for NNPDF associated

with splitting data into training and validation sets mimic the effect of a tolerance

for MSTW/CTEQ (see discussion in section 3.2 of ref. [39]). Further investigation

would be needed by the NNPDF Collaboration to clarify this possible explanation.

• The Monte Carlo approach using data replicas is also better suited when making fits

to limited data sets without the need to restrict the input parameterisation. We com-

pared the global-fit PDFs to those extracted using a similar flexible parameterisation

from more limited data sets either excluding HERA data, including only HERA data,

or including only collider (HERA and Tevatron) data. The fits to limited data sets

gave much larger PDF uncertainties for some parton combinations, implying that
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we need data from HERA, the Tevatron and the fixed-target experiments to get a

meaningful result. The PDF uncertainty bands from the fits to the limited data sets

are not close to overlapping in many cases, implying that some kind of tolerance is

needed to accommodate inconsistencies between the various data subsets.

• As a further exercise to examine the effect of data set inconsistency, we generated

idealised pseudodata from the best-fit theory predictions, then we introduced delib-

erate inconsistencies. The fractional PDF uncertainties were very similar whether

fitting the real data, the consistent pseudodata or the inconsistent pseudodata. On

the other hand, the central values obtained when fitting the inconsistent pseudodata

were incompatible accounting for the uncertainty bands, even though the χ2
global only

increased by around 10% and the χ2/Npts. for individual data sets did not deviate

far above unity. Given that a good fit should have χ2/Npts. approximately in the

range 1±
√

2/Npts. [12], giving 1.0±0.1 for Npts. ∼ 200, it is far from obvious to spot

genuine inconsistencies in the real data of the size we introduced into the idealised

pseudodata. It is definitely not the case that the PDF uncertainties will automati-

cally expand to accommodate any inconsistencies. Again, this suggests the need for

a tolerance to accommodate potential data set inconsistencies in the real data.

• Having established the need for an appropriate tolerance, we pointed out that it

could be introduced by rescaling all experimental uncertainties by a common factor

(say, 3) in the generation of data replicas. However, the introduction of a “dynamic”

tolerance for each eigenvector direction is not possible, since no use is made of the

covariance matrix of fit parameters in the Monte Carlo error propagation.

• Instead, we proposed sampling the covariance matrix of fit parameters by stepping

along each eigenvector direction by a random amount, including the appropriate

tolerance values. This method of generating random PDF sets is close to the usual

generation of eigenvector PDF sets in the Hessian method where one steps along each

eigenvector direction in turn by a fixed amount.

• In fact, assuming linearity between the input PDF parameters and derived quantities

such as evolved PDFs or hadronic cross sections, an assumption that is inherent in the

Hessian method, then it is more convenient to generate random predictions on-the-fly

from the existing eigenvector PDF sets.

• As a simple example application to demonstrate the benefits of having randomly-

distributed theory predictions, we used Bayesian reweighting to investigate the effect

on the PDFs of recent LHC data on the W → ℓν charge asymmetry. Similar studies

can now easily be performed by third parties using any PDF determination where

eigenvector PDF sets are provided. The reweighting technique is therefore no longer

limited only to using the PDF sets provided by the NNPDF Collaboration.

We conclude that the Monte Carlo method using data replicas is, on balance, not superior to

the Hessian method in a global fit when using a conventional functional-form parameterisa-

tion of the input PDFs. In particular, one of the key benefits of the Monte Carlo approach,
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namely the use of Bayesian reweighting, can even be accomplished more efficiently using

the existing eigenvector PDF sets. Therefore, any future update of the “MSTW 2008”

analysis will continue to use the Hessian method with a “dynamic” tolerance.
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