3,963 research outputs found

    Assessing statistical significance of periodogram peaks

    Full text link
    The least-squares (or Lomb-Scargle) periodogram is a powerful tool which is used routinely in many branches of astronomy to search for periodicities in observational data. The problem of assessing statistical significance of candidate periodicities for different periodograms is considered. Based on results in extreme value theory, improved analytic estimations of false alarm probabilities are given. They include an upper limit to the false alarm probability (or a lower limit to the significance). These estimations are tested numerically in order to establish regions of their practical applicability.Comment: 7 pages, 6 figures, 1 table; To be published in MNRA

    Dynamical tunneling in mushroom billiards

    Full text link
    We study the fundamental question of dynamical tunneling in generic two-dimensional Hamiltonian systems by considering regular-to-chaotic tunneling rates. Experimentally, we use microwave spectra to investigate a mushroom billiard with adjustable foot height. Numerically, we obtain tunneling rates from high precision eigenvalues using the improved method of particular solutions. Analytically, a prediction is given by extending an approach using a fictitious integrable system to billiards. In contrast to previous approaches for billiards, we find agreement with experimental and numerical data without any free parameter.Comment: 4 pages, 4 figure

    Human phosphodiesterase 4D7 (PDE4D7) expression is increased in TMPRSS2-ERG positive primary prostate cancer and independently adds to a reduced risk of post-surgical disease progression

    Get PDF
    background: There is an acute need to uncover biomarkers that reflect the molecular pathologies, underpinning prostate cancer progression and poor patient outcome. We have previously demonstrated that in prostate cancer cell lines PDE4D7 is downregulated in advanced cases of the disease. To investigate further the prognostic power of PDE4D7 expression during prostate cancer progression and assess how downregulation of this PDE isoform may affect disease outcome, we have examined PDE4D7 expression in physiologically relevant primary human samples. methods: About 1405 patient samples across 8 publically available qPCR, Affymetrix Exon 1.0 ST arrays and RNA sequencing data sets were screened for PDE4D7 expression. The TMPRSS2-ERG gene rearrangement status of patient samples was determined by transformation of the exon array and RNA seq expression data to robust z-scores followed by the application of a threshold >3 to define a positive TMPRSS2-ERG gene fusion event in a tumour sample. results: We demonstrate that PDE4D7 expression positively correlates with primary tumour development. We also show a positive association with the highly prostate cancer-specific gene rearrangement between TMPRSS2 and the ETS transcription factor family member ERG. In addition, we find that in primary TMPRSS2-ERG-positive tumours PDE4D7 expression is significantly positively correlated with low-grade disease and a reduced likelihood of progression after primary treatment. Conversely, PDE4D7 transcript levels become significantly decreased in castration resistant prostate cancer (CRPC). conclusions: We further characterise and add physiological relevance to PDE4D7 as a novel marker that is associated with the development and progression of prostate tumours. We propose that the assessment of PDE4D7 levels may provide a novel, independent predictor of post-surgical disease progression

    On Hilberg's Law and Its Links with Guiraud's Law

    Full text link
    Hilberg (1990) supposed that finite-order excess entropy of a random human text is proportional to the square root of the text length. Assuming that Hilberg's hypothesis is true, we derive Guiraud's law, which states that the number of word types in a text is greater than proportional to the square root of the text length. Our derivation is based on some mathematical conjecture in coding theory and on several experiments suggesting that words can be defined approximately as the nonterminals of the shortest context-free grammar for the text. Such operational definition of words can be applied even to texts deprived of spaces, which do not allow for Mandelbrot's ``intermittent silence'' explanation of Zipf's and Guiraud's laws. In contrast to Mandelbrot's, our model assumes some probabilistic long-memory effects in human narration and might be capable of explaining Menzerath's law.Comment: To appear in Journal of Quantitative Linguistic

    The Case for Learned Index Structures

    Full text link
    Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indicate if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible

    The neutron halo of 6^6He in a microscopic model

    Full text link
    The two--neutron separation energy of 6^6He has been reproduced for the first time in a realistic parameter--free microscopic multicluster model comprising the α+n+n\alpha +n+n and t+tt+t clusterizations, with α\alpha cluster breathing excitations included. The contribution of the t+tt+t channel is substantial. A very thick (0.85 fm) neutron halo has been found in full agreement with the results of the latest phenomenological analysis.Comment: Submitted to Phys. Rev. C, 8 pages, Latex with Revtex, 2 figures (not included) available on request, 08-03-9

    Ariel - Volume 4 Number 6

    Get PDF
    Editors David A. Jacoby Eugenia Miller Tom Williams Associate Editors Paul Bialas Terry Burt Michael Leo Gail Tenikat Editor Emeritus and Business Manager Richard J. Bonnano Movie Editor Robert Breckenridge Staff Richard Blutstein Mary F. Buechler J.D. Kanofsky Rocket Weber David Maye

    Three-body Faddeev Calculation for 11Li with Separable Potentials

    Get PDF
    The halo nucleus 11^{11}Li is treated as a three-body system consisting of an inert core of 9^{9}Li plus two valence neutrons. The Faddeev equations are solved using separable potentials to describe the two-body interactions, corresponding in the n-9^{9}Li subsystem to a p1/2_{1/2} resonance plus a virtual s-wave state. The experimental 11^{11}Li energy is taken as input and the 9^{9}Li transverse momentum distribution in 11^{11}Li is studied.Comment: 6 pages, RevTeX, 1 figur
    corecore