276 research outputs found

    Solid behavior of anisotropic rigid frictionless bead assemblies

    Get PDF
    We investigate the structure and mechanical behavior of assemblies of frictionless, nearly rigid equal-sized beads, in the quasistatic limit, by numerical simulation. Three different loading paths are explored: triaxial compression, triaxial extension and simple shear. Generalizing recent results [1], we show that the material, despite rather strong finite sample size effects, is able to sustain a finite deviator stress in the macroscopic limit, along all three paths, without dilatancy. The shape of the yield surface is adequately described by a Lade-Duncan (rather than Mohr-Coulomb) criterion. While scalar state variables keep the same values as in isotropic systems, fabric and force anisotropies are each characterized by one parameter and are in one-to-one correspondence with principal stress ratio along all three loading paths.The anisotropy of the pair correlation function extends to a distance between bead surfaces on the order of 10% of the diameter. The tensor of elastic moduli is shown to possess a nearly singular, uniaxial structure related to stress anisotropy. Possible stress-strain relations in monotonic loading paths are also discussed

    Revisiting diagenesis on the Ontong Java Plateau: Evidence for authigenic crust precipitation in Globorotalia tumida

    Get PDF
    The calcite tests of foraminifera lie in marine sediments for thousands to millions of years, before being analysed to generate trace element and isotope palaeoproxy records. These sediments constitute a distinct physio-chemical environment from the conditions in which the tests formed. Storage in sediments can modify the trace element and isotopic content of foraminiferal calcite through diagenetic alteration, which has the potential to confound their palaeoceanographic interpretation. A previous study of G. tumida from the Ontong Java Plateau, western equatorial Pacific, found that preferential dissolution of higher-Mg chamber calcite, and the preservation of a low-Mg crust on the tests significantly reduced whole-test Mg/Ca and Sr/Ca [Brown and Elderfield, 1996]. Here, we revisit these specimens with a combination of synchrotron X-ray computed tomography (sXCT) and electron probe micro-analyses (EPMA) to re-evaluate the nature of their diagenetic alteration. The dissolution of higher-Mg calcite with depth was directly observed in the sXCT data, confirming the inference of the previous study. The sXCT data further reveal a thickening of the chemically and structurally distinct calcite crust with depth. We propose that these crusts have a diagenetic origin, driven by the simultaneous dissolution of high-Mg chamber calcite and precipitation of low-Mg crust from the resulting modified pore-water solution. While the breadth of the study is limited by the nature of the techniques, the observation of both dissolution and re-precipitation of foraminiferal calcite serves to demonstrate the action of two simultaneous diagenetic alteration processes, with significant impacts on the resulting palaeoproxy signals.The authors would like to acknowledge Aleksey Sadekov, Gerald Langer, India Weidle, Alberto de Fanis, Andrew Bodey, Joan Vila-Comamala and Ulrich Wagner for their help with the project. The work was funded by the Diamond Light Source and by the ERC (2010-NEWLOG ADG-267931 grant to HE).This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/2014PA00275

    The anisotropy of granular materials

    Get PDF
    The effect of the anisotropy on the elastoplastic response of two dimensional packed samples of polygons is investigated here, using molecular dynamics simulation. We show a correlation between fabric coefficients, characterizing the anisotropy of the granular skeleton, and the anisotropy of the elastic response. We also study the anisotropy induced by shearing on the subnetwork of the sliding contacts. This anisotropy provides an explanation to some features of the plastic deformation of granular media.Comment: Submitted to PR

    Search for low-mass dark matter via bremsstrahlung radiation and the Migdal effect in SuperCDMS

    Get PDF
    We present a new analysis of previously published SuperCDMS data using a profile likelihood framework to search for sub-GeV dark matter (DM) particles through two inelastic scattering channels: bremsstrahlung radiation and the Migdal effect. By considering these possible inelastic scattering channels, experimental sensitivity can be extended to DM masses that are undetectable through the DM-nucleon elastic scattering channel, given the energy threshold of current experiments. We exclude DM masses down to 220 MeV/c2 at 2.7×10-30 cm2 via the bremsstrahlung channel. The Migdal channel search provides overall considerably more stringent limits and excludes DM masses down to 30 MeV/c2 at 5.0×10-30 cm2

    Effects of Friction and Disorder on the Quasi-Static Response of Granular Solids to a Localized Force

    Full text link
    The response to a localized force provides a sensitive test for different models of stress transmission in granular solids. The elasto-plastic models traditionally used by engineers have been challenged by theoretical and experimental results which suggest a wave-like (hyperbolic) propagation of the stress, as opposed to the elliptic equations of static elasticity. Numerical simulations of two-dimensional granular systems subject to a localized external force are employed to examine the nature of stress transmission in these systems as a function of the magnitude of the applied force, the frictional parameters and the disorder (polydispersity). The results indicate that in large systems (typically considered by engineers), the response is close to that predicted by isotropic elasticity whereas the response of small systems (or when sufficiently large forces are applied) is strongly anisotropic. In the latter case the applied force induces changes in the contact network accompanied by frictional sliding. The larger the coefficient of static friction, the more extended is the range of forces for which the response is elastic and the smaller the anisotropy. Increasing the degree of polydispersity (for the range studied, up to 25%) decreases the range of elastic response. This article is an extension of a previously published letter [1].Comment: 21 pages (PDFLaTeX), 24 figures (some of them bitmapped to save space); submitted to Phys. Rev.

    Role of forested land for natural flood management in the UK: A review

    Get PDF
    corecore