76 research outputs found

    Bragg scattering of Cooper pairs in an ultra-cold Fermi gas

    Full text link
    We present a theoretical treatment of Bragg scattering of a degenerate Fermi gas in the weakly interacting BCS regime. Our numerical calculations predict correlated scattering of Cooper pairs into a spherical shell in momentum space. The scattered shell of correlated atoms is centered at half the usual Bragg momentum transfer, and can be clearly distinguished from atoms scattered by the usual single-particle Bragg mechanism. We develop an analytic model that explains key features of the correlated-pair Bragg scattering, and determine the dependence of this scattering on the initial pair correlations in the gas.Comment: Manuscript substantially revised. Version 2 contains a more detailed discussion of the collisional interaction used in our theory, and is based on three-dimensional solution

    Probing the quantum state of a 1D Bose gas using off-resonant light scattering

    Full text link
    We present a theoretical treatment of coherent light scattering from an interacting 1D Bose gas at finite temperatures. We show how this can provide a nondestructive measurement of the atomic system states. The equilibrium states are determined by the temperature and interaction strength, and are characterized by the spatial density-density correlation function. We show how this correlation function is encoded in the angular distribution of the fluctuations of the scattered light intensity, thus providing a sensitive, quantitative probe of the density-density correlation function and therefore the quantum state of the gas.Comment: 6 pages, 4 figure

    Three-body recombination of ultracold Bose gases using the truncated Wigner method

    Get PDF
    We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases. We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recombination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and can be simulated using known numerical methods. As an example we investigate the behaviour of a simple homogeneous Bose gas.Comment: Replaced paper same as original; correction to author list on cond-mat mad

    Coherent Tunneling of Atoms from Bose-condensed Gases at Finite Temperatures

    Full text link
    Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of the isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u^2 and v^2 amplitudes.Comment: 26 pages, 5 figures, minor changes, to appear in PR

    Output of a pulsed atom laser

    Get PDF
    We study the output properties of a pulsed atom laser consisting of an interacting Bose-Einstein condensate (BEC) in a magnetic trap and an additional rf field transferring atoms to an untrapped Zeeman sublevel. For weak output coupling we calculate the dynamics of the decaying condensate population, of its chemical potential and the velocity of the output atoms analytically.Comment: 4 pages, RevTeX. Full ps file available on http://mpqibmr1.mpq.mpg.de:5000/~man

    Finite-temperature dynamics of a single vortex in a Bose-Einstein condensate: Equilibrium precession and rotational symmetry breaking

    Full text link
    We consider a finite-temperature Bose-Einstein condensate in a quasi-two-dimensional trap containing a single precessing vortex. We find that such a configuration arises naturally as an ergodic equilibrium of the projected Gross-Pitaevskii equation, when constrained to a finite conserved angular momentum. In an isotropic trapping potential the condensation of the classical field into an off-axis vortex state breaks the rotational symmetry of the system. We present a methodology to identify the condensate and the Goldstone mode associated with the broken rotational symmetry in the classical-field model. We also examine the variation in vortex trajectories and thermodynamic parameters of the field as the energy of the microcanonical field simulation is varied.Comment: 21 pages, 10 figures. v2: Minor changes and corrections to figures and text. To appear in PR

    Effects of interatomic collisions on atom laser outcoupling

    Full text link
    We present a computational approach to the outcoupling in a simple one-dimensional atom laser model, the objective being to circumvent mathematical difficulties arising from the breakdown of the Born and Markov approximations. The approach relies on the discretization of the continuum representing the reservoir of output modes, which allows the treatment of arbitrary forms of outcoupling as well as the incorporation of non-linear terms in the Hamiltonian, associated with interatomic collisions. By considering a single-mode trapped condensate, we study the influence of elastic collisions between trapped and free atoms on the quasi steady-state population of the trap, as well as the energy distribution and the coherence of the outcoupled atoms.Comment: 25 pages, 11 figures, to appear in J. Phys.

    Phase dynamics in a binary-collisions atom laser scheme

    Full text link
    Various aspects of the phase dynamics of an atom laser scheme based on binary collisions are investigated. Analytical estimates of the influence of elastic atom-atom collisions on the laser linewidth are given, and linewidths achievable in a recently proposed atom laser scheme [Phys. Rev. A 56, 2989 (1997)] are evaluated explicitly. The extent to which a relative phase can be established between two interfering atom lasers, as well as the properties of that phase, are also investigated.Comment: Revtex, 10 pages, 6 figure

    An Atom Laser with a cw Output Coupler

    Full text link
    We demonstrate a continuous output coupler for magnetically trapped atoms. Over a period of up to 100 ms a collimated and monoenergetic beam of atoms is continuously extracted from a Bose- Einstein condensate. The intensity and kinetic energy of the output beam of this atom laser are controlled by a weak rf-field that induces spin flips between trapped and untrapped states. Furthermore, the output coupler is used to perform a spectroscopic measurement of the condensate, which reveals the spatial distribution of the magnetically trapped condensate and allows manipulation of the condensate on a micrometer scale.Comment: 4 pages, 4 figure

    Nonlocal looking equations can make nonlinear quantum dynamics local

    Full text link
    A general method for extending a non-dissipative nonlinear Schr\"odinger and Liouville-von Neumann 1-particle dynamics to an arbitrary number of particles is described. It is shown at a general level that the dynamics so obtained is completely separable, which is the strongest condition one can impose on dynamics of composite systems. It requires that for all initial states (entangled or not) a subsystem not only cannot be influenced by any action undertaken by an observer in a separated system (strong separability), but additionally that the self-consistency condition Tr2∘ϕ1+2t=ϕ1t∘Tr2Tr_2\circ \phi^t_{1+2}=\phi^t_{1}\circ Tr_2 is fulfilled. It is shown that a correct extension to NN particles involves integro-differential equations which, in spite of their nonlocal appearance, make the theory fully local. As a consequence a much larger class of nonlinearities satisfying the complete separability condition is allowed than has been assumed so far. In particular all nonlinearities of the form F(∣ψ(x)∣)F(|\psi(x)|) are acceptable. This shows that the locality condition does not single out logarithmic or 1-homeogeneous nonlinearities.Comment: revtex, final version, accepted in Phys.Rev.A (June 1998
    • …
    corecore