378 research outputs found

    The North Ecliptic Pole Supercluster

    Get PDF
    We have used the ROSAT All-Sky Survey to detect a known supercluster at z=0.087 in the North Ecliptic Pole region. The X-ray data greatly improve our understanding of this supercluster's characteristics, approximately doubling our knowledge of the structure's spatial extent and tripling the cluster/group membership compared to the optical discovery data. The supercluster is a rich structure consisting of at least 21 galaxy clusters and groups, 12 AGN, 61 IRAS galaxies, and various other objects. A majority of these components were discovered with the X-ray data, but the supercluster is also robustly detected in optical, IR, and UV wavebands. Extending 129 x 102 x 67 (1/h50 Mpc)^3, the North Ecliptic Pole Supercluster has a flattened shape oriented nearly edge-on to our line-of-sight. Owing to the softness of the ROSAT X-ray passband and the deep exposure over a large solid angle, we have detected for the first time a significant population of X-ray emitting galaxy groups in a supercluster. These results demonstrate the effectiveness of X-ray observations with contiguous coverage for studying structure in the Universe.Comment: Accepted for publication in The Astrophysical Journal; 5 pages with 2 embedded figures; uses emulateapj.sty; For associated animations, see http://www.ifa.hawaii.edu/~mullis/nep3d.html; A high-resolution color postscript version of the full paper is available at http://www.ifa.hawaii.edu/~mullis/papers/nepsc.ps.g

    X-ray Properties of the Abell 644 Cluster of Galaxies

    Get PDF
    We use new ASCA observations and archival ROSAT Position Sensitive Proportional Counter (PSPC) data to determine the X-ray spectral properties of the intracluster gas in Abell 644. From the overall spectrum, we determine the average gas temperature to be 8.64 (+0.67,-0.56) keV, and an abundance of 0.32 (+/-0.04) Z⊙Z_{\odot}. The global ASCA and ROSAT spectra imply a cooling rate of 214 (+100,-91) M⊙M_{\odot} yr−1^{-1}. The PSPC X-ray surface brightness profile and the ASCA data suggest a somewhat higher cooling rate. We determine the gravitational mass and gas mass as a function of radius. The total gravitating mass within 1.2 Mpc is 6.2×10146.2\times10^{14} M⊙M_{\odot}, of which 20% is in the form of hot gas. There is a region of elevated temperature 1.5-5 arcmin to the west of the cluster center. The south-southwest region of the cluster also shows excess emission in the ROSAT PSPC X-ray image, aligned with the major axis of the optical cD galaxy in the center of the cluster. We argue that the cluster is undergoing or has recently undergone a minor merger. The combination of a fairly strong cooling flow and evidence for a merger make this cluster an interesting case to test the disruption of cooling flow in mergers.Comment: 26 pages LaTeX including 9 eps figures + 4 pages LaTeX tables (landscape); accepted to ApJ, uses aaspp

    The ROSAT North Ecliptic Pole Survey: The Optical Identifications

    Full text link
    The X-ray data around the North Ecliptic Pole (NEP) of the ROSAT All Sky Survey have been used to construct a contiguous area survey consisting of a sample of 445 individual X-ray sources above a flux of ~2x10^-14 erg cm^-2 s^-1 in the 0.5-2.0 keV energy band. The NEP survey is centered at RA (2000) = 18h 00m, DEC(2000) = +66deg 33arcmin and covers a region of 80.7 sq. deg at a moderate Galactic latitude of b = 29.8deg. Hence, the NEP survey is as deep and covers a comparable solid angle to the ROSAT serendipitous surveys, but is also contiguous. We have identified 99.6% of the sources and determined redshifts for the extragalactic objects. In this paper we present the optical identifications of the NEP catalog of X-ray sources including basic X-ray data and properties of the sources. We also describe with some detail the optical identification procedure. The classification of the optical counterparts to the NEP sources is very similar to that of previous surveys, in particular the Einstein Extended Medium Sensitivity Survey (EMSS). The main constituents of the catalog are active galactic nuclei (~49%), either type 1 or type 2 according to the broadness of their permitted emission lines. Stellar counterparts are the second most common identification class (~34%). Clusters and groups of galaxies comprise 14%, and BL Lacertae objects 2%. One non-AGN galaxy, and one planetary nebula have also been found. The NEP catalog of X-ray sources is a homogeneous sample of astronomical objects featuring complete optical identification.Comment: Accepted for publication in the ApJS; 33 pages including 12 postscript figures and 3 tables; uses emulateapj.sty. On-line source catalog at http://www.eso.org/~cmullis/research/nep-catalog.htm

    A Richness Study of 14 Distant X-ray Clusters From the 160 Square Degree Survey

    Get PDF
    We have measured the surface density of galaxies toward 14 X-ray-selected cluster candidates at redshifts greater than z=0.46, and we show that they are associated with rich galaxy concentrations. We find that the clusters range between Abell richness classes 0-2, and have a most probable richness class of one. We compare the richness distribution of our distant clusters to those for three samples of nearby clusters with similar X-ray luminosities. We find that the nearby and distant samples have similar richness distributions, which shows that clusters have apparently not evolved substantially in richness since redshift z =0.5. We compare the distribution of distant X-ray clusters in the L_x--richness plane to the distribution of optically-selected clusters from the Palomar Distant Cluster Survey. The optically-selected clusters appear overly rich for their X-ray luminosities when compared to X-ray-selected clusters. Apparently, X-ray and optical surveys do not necessarily sample identical mass concentrations at large redshifts. This may indicate the existence of a population of optically rich clusters with anomalously low X-ray emission. More likely, however, it reflects the tendency for optical surveys to select unvirialized mass concentrations, as might be expected when peering along large-scale filaments.Comment: The abstract has been abridged. Accepted for publication in the Astrophysical Journa

    Correlation length of X-ray brightest Abell clusters

    Get PDF
    We compute the cluster auto-correlation function Οcc(r)\xi_{cc}(r) of an X-ray flux limited sample of Abell clusters (XBACs, \cite{ebe}). For the total XBACs sample we find a power-law fit Οcc=(r/r0)Îł\xi_{cc}=(r/r_0)^{\gamma} with r0=21.1r_0=21.1 Mpc h−1^{-1}and Îł=−1.9\gamma =-1.9 consistent with the results of R≄1R \ge 1 Abell clusters. We also analyze Οcc(r)\xi_{cc}(r) for subsamples defined by different X-ray luminosity thresholds where we find a weak tendency of larger values of r0r_0 with increasing X-ray luminosity although with a low statistical significance. In the different subsamples analyzed we find 21<r0<3521 < r_0 < 35 Mpc h−1^{-1} and −1.9<Îł<−1.6-1.9< \gamma < -1.6. Our analysis suggests that cluster X-ray luminosities may be used for a reliable confrontation of cluster spatial distribution properties in models and observations.Comment: Accepted for publication in Astrophysical Journa

    Measuring Molecular, Neutral Atomic, and Warm Ionized Galactic Gas Through X-Ray Absorption

    Get PDF
    We study the column densities of neutral atomic, molecular, and warm ionized Galactic gas through their continuous absorption of extragalactic X-ray spectra at |b| > 25 degrees. For N(H,21cm) < 5x10^20 cm^-2 there is an extremely tight relationship between N(H,21cm) and the X-ray absorption column, N(xray), with a mean ratio along 26 lines of sight of N(xray)/N(H,21cm) = 0.972 +- 0.022. This is significantly less than the anticpated ratio of 1.23, which would occur if He were half He I and half He II in the warm ionized component. We suggest that the ionized component out of the plane is highly ionized, with He being mainly He II and He III. In the limiting case that H is entirely HI, we place an upper limit on the He abundance in the ISM of He/H <= 0.103. At column densities N(xray) > 5x10^20 cm^-2, which occurs at our lower latitudes, the X-ray absorption column N(xray) is nearly double N(H,21cm). This excess column cannot be due to the warm ionized component, even if He were entirely He I, so it must be due to a molecular component. This result implies that for lines of sight out of the plane with |b| ~ 30 degrees, molecular gas is common and with a column density comprable to N(H,21cm). This work bears upon the far infrared background, since a warm ionized component, anticorrelated with N(H,21cm), might produce such a background. Not only is such an anticorrelation absent, but if the dust is destroyed in the warm ionized gas, the far infrared background may be slightly larger than that deduced by Puget et al. (1996).Comment: 1 AASTeX file, 14 PostScript figure files which are linked within the TeX fil

    A Rich Cluster of Galaxies Near the Quasar B2 1335+28 at z=1.1: Color Distribution and Star-Formation Properties

    Get PDF
    We previously reported a significant clustering of red galaxies (R-K=3.5--6) around the radio-loud quasar B2 1335+28 at z=1.086. In this paper, we establish the existence of a rich cluster at the quasar redshift, and study the properties of the cluster galaxies through further detailed analysis of the photometric data. The color distribution of the galaxies in the cluster is quite broad and the fraction of blue galaxies (\sim 70%) is much larger than in intermediate-redshift clusters. Using evolutionary synthesis models, we show that this color distribution can be explained by galaxies with various amounts of star-formation activity mixed with the old stellar populations. Notably, there are about a dozen galaxies which show very red optical-NIR colors but also show significant UV excess with respect to passive-evolution models. They can be interpreted as old early-type galaxies with a small amount of star formation. The fact that the UV-excess red galaxies are more abundant than the quiescent red ones suggests that a large fraction of old galaxies in this cluster are still forming stars to some extent. However, a sequence of quiescent red galaxies is clearly identified on the R-K versus K color-magnitude (C-M) diagram. The slope and zero point of their C-M relation appear to be consistent with those expected for the precursors of the C-M relation of present-day cluster ellipticals when observed at z=1.1. We estimate the Abell richness class of the cluster to be R \sim 1. New X-ray data presented here place an upper limit of L_x < 2 10^{44} erg s^{-1} for the cluster luminosity. Inspections of the wider optical images reveal some lumpy structure, suggesting that the whole system is still dynamically young.Comment: 54 pages including 13 Postscript figures, 1 jpg figure, and 1 table, uses aasms4.sty and epsf.sty. Accepted for publication in ApJ: Replaced as the older verison was missed to include the figure 2c, 2d, and figure

    Non-thermal Origin of the EUV and Soft X-rays from the Coma Cluster - Cosmic Rays in Equipartition with the Thermal Medium

    Get PDF
    The role of cosmic rays (CR) in the formation and evolution of clusters of galaxies has been much debated. It may well be related to other fundamental questions, such as the mechanism which heats and virializes the intracluster medium (ICM), and the frequency at which the ICM is shocked. There is now compelling evidence both from the cluster soft excess (CSE) and the `hard-tail' emissions at energies above 10 keV, that many clusters are luminous sources of inverse-Compton (IC) emission. This is the first direct measurement of cluster CR: the technique is free from our uncertainties in the ICM magnetic field, and is not limited to the small subset of clusters which exhibit radio halos. The CSE emitting electrons fall within a crucial decade of energy where they have the least spectral evolution, and where most of the CR pressure resides. However their survival times do not date them back to the relic CR population. By using the CSE data of the Coma cluster, we demonstrate that the CR are energetically as important as the thermal ICM: the two components are in pressure equiparition. Thus, contrary to previous expectations, CR are a dominant component of the ICM, and their origin and effects should be explored. The best-fit CR spectral index is in agreement with the Galactic value.Comment: ApJ accepted; 10 pages LaTeX; 2 figures and 1 table in PostScrip

    Large-Scale Sunyaev-Zel'dovich Effect: Measuring Statistical Properties with Multifrequency Maps

    Get PDF
    We study the prospects for extracting detailed statistical properties of the Sunyaev-Zel'dovich (SZ) effect associated with large scale structure using upcoming multifrequency CMB experiments. The greatest obstacle to detecting the large-angle signal is the confusion noise provided by the primary anisotropies themselves, and to a lesser degree galactic and extragalactic foregrounds. We employ multifrequency subtraction techniques and the latest foregrounds models to determine the detection threshold for the Boomerang, MAP (several microK) and Planck CMB (sub microK) experiments. Calibrating a simplified biased-tracer model of the gas pressure off recent hydrodynamic simulations, we estimate the SZ power spectrum, skewness and bispectrum through analytic scalings and N-body simulations of the dark matter. We show that the Planck satellite should be able to measure the SZ effect with sufficient precision to determine its power spectrum and higher order correlations, e.g. the skewness and bispectrum. Planck should also be able to detect the cross correlation between the SZ and gravitational lensing effect in the CMB. Detection of these effects will help determine the properties of the as yet undetected gas, including the manner in which the gas pressure traces the dark matter.Comment: 13 ApJ pages, 11 figures; typos and figure 5 revised; submitted to Ap

    Nonthermal Emission from Accreting and Merging Clusters of Galaxies

    Get PDF
    We compare the nonthermal emission from clusters of galaxies undergoing minor mergers (``accreting'' clusters) and major mergers (``merging'' clusters). For accreting clusters, the radial distribution of the nonthermal emission in the clusters is also calculated. The relativistic electrons, which are the origin of the nonthermal radiation through inverse Compton (IC) and synchrotron mission, are assumed to be accelerated at shocks produced by accretion or mergers. We estimate the typical accretion rate and merger probability according to a hierarchical clustering model. We show that the total luminosity of IC emission from accreting and merging clusters are similar. On the other hand, the luminosity of synchrotron radio emission of the former is much smaller than that of the latter. We show that about 10% of clusters at z~0 should have hard X-ray and radio nonthermal emissions due to their last major merger, which are comparable to or dominate those due to ongoing accretion. Moreover, 20-40% of clusters should have significant EUV emission due to their last merger. We also investigate the case where the criterion of mergers is relaxed. If we extend the definition of a merger to an increase in the mass of the larger subcluster by at least 10% of its initial mass, about 20-30% of clusters at z~0 should have hard X-ray and radio nonthermal emissions due to the merger even in a low density universe. We compare the results with observations. We find that the observed EUV emission from clusters is not attributed to accretion. If the diffuse radio emission observed in clusters is synchrotron emission from electrons accelerated via accretion or merging, the magnetic fields of clusters are generally as small as ~0.1 mu G.Comment: 33 pages, 18 figures, accepted by Ap
    • 

    corecore