321 research outputs found
A Phenomenological Study of Counseling Students’ Learning About Wellness
The authors conducted a phenomenological qualitative study of counselor students’ experiences of learning about wellness guided by the Indivisible Self (Myers & Sweeney, 2004). Participants (N = 11 ) engaged in the experiential wellness activities during co-curricular group meetings throughout one academic year. Data were analyzed and three themes emerged: Wellness Considerations, Wellness Connections, and Wellness Applications. Limitations and directions for future research are illustrated
Phase separation and electron pairing in repulsive Hubbard clusters
Exact thermal studies of small (4-site, 5-site and 8-site)
Hubbard clusters with local electron repulsion yield intriguing insight into
phase separation, charge-spin separation, pseudogaps, condensation, in
particular, pairing fluctuations away from half filling (near optimal doping).
These exact calculations, carried out in canonical (i.e. for fixed electron
number N) and grand canonical (i.e. fixed chemical potential ) ensembles,
monitoring variations in temperature T and magnetic field h, show rich phase
diagrams in a T- space consisting of pairing fluctuations and signatures
of condensation. These electron pairing instabilities are seen when the onsite
Coulomb interaction U is smaller than a critical value U(T) and they point
to a possible electron pairing mechanism. The specific heat, magnetization,
charge pairing and spin pairing provide strong support for the existence of
competing (paired and unpaired) phases near optimal doping in these clusters as
observed in recent experiments in doped LaSrCuO high T
superconductors.Comment: 5 pages, 5 figure
Hepatic steatosis and fibrosis: Non-invasive assessment
Chronic liver disease is a major cause of morbidity and mortality worldwide and usually develops over many years, as a result of chronic inflammation and scarring, resulting in end-stage liver disease and its complications. The progression of disease is characterised by ongoing inflammation and consequent fibrosis, although hepatic steatosis is increasingly being recognised as an important pathological feature of disease, rather than being simply an innocent bystander. However, the current gold standard method of quantifying and staging liver disease, histological analysis by liver biopsy, has several limitations and can have associated morbidity and even mortality. Therefore, there is a clear need for safe and noninvasive assessment modalities to determine hepatic steatosis, inflammation and fibrosis. This review covers key mechanisms and the importance of fibrosis and steatosis in the progression of liver disease. We address non-invasive imaging and blood biomarker assessments that can be used as an alternative to information gained on liver biopsy
Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling
We study the two-dimensional periodic Anderson model at half-filling using
quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic
order-disorder transition as a function of the effective exchange coupling
between the conduction and localized bands. Low-lying spin and charge
excitations are determined using the maximum entropy method to analytically
continue the QMC data. At finite temperature we find a competition between the
Kondo effect and antiferromagnetic order which develops in the localized band
through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2
A Maximum Entropy Method of Obtaining Thermodynamic Properties from Quantum Monte Carlo Simulations
We describe a novel method to obtain thermodynamic properties of quantum
systems using Baysian Inference -- Maximum Entropy techniques. The method is
applicable to energy values sampled at a discrete set of temperatures from
Quantum Monte Carlo Simulations. The internal energy and the specific heat of
the system are easily obtained as are errorbars on these quantities. The
entropy and the free energy are also obtainable. No assumptions as to the
specific functional form of the energy are made. The use of a priori
information, such as a sum rule on the entropy, is built into the method. As a
non-trivial example of the method, we obtain the specific heat of the
three-dimensional Periodic Anderson Model.Comment: 8 pages, 3 figure
Studies on the Mating Behavior of the House Fly, Musca Domestica L.
Author Institution: Entomology Research Division, Agric, Res. Serv., U.S.D.A. Gainesville, Fla
- …