321 research outputs found

    A Phenomenological Study of Counseling Students’ Learning About Wellness

    Get PDF
    The authors conducted a phenomenological qualitative study of counselor students’ experiences of learning about wellness guided by the Indivisible Self (Myers & Sweeney, 2004). Participants (N = 11 ) engaged in the experiential wellness activities during co-curricular group meetings throughout one academic year. Data were analyzed and three themes emerged: Wellness Considerations, Wellness Connections, and Wellness Applications. Limitations and directions for future research are illustrated

    Phase separation and electron pairing in repulsive Hubbard clusters

    Full text link
    Exact thermal studies of small (4-site, 5-site and 8-site) Hubbard clusters with local electron repulsion yield intriguing insight into phase separation, charge-spin separation, pseudogaps, condensation, in particular, pairing fluctuations away from half filling (near optimal doping). These exact calculations, carried out in canonical (i.e. for fixed electron number N) and grand canonical (i.e. fixed chemical potential μ\mu) ensembles, monitoring variations in temperature T and magnetic field h, show rich phase diagrams in a T-μ\mu space consisting of pairing fluctuations and signatures of condensation. These electron pairing instabilities are seen when the onsite Coulomb interaction U is smaller than a critical value Uc_c(T) and they point to a possible electron pairing mechanism. The specific heat, magnetization, charge pairing and spin pairing provide strong support for the existence of competing (paired and unpaired) phases near optimal doping in these clusters as observed in recent experiments in doped La2x_{2-x}Srx_xCuO4+y_{4+y} high Tc_c superconductors.Comment: 5 pages, 5 figure

    Hepatic steatosis and fibrosis: Non-invasive assessment

    Get PDF
    Chronic liver disease is a major cause of morbidity and mortality worldwide and usually develops over many years, as a result of chronic inflammation and scarring, resulting in end-stage liver disease and its complications. The progression of disease is characterised by ongoing inflammation and consequent fibrosis, although hepatic steatosis is increasingly being recognised as an important pathological feature of disease, rather than being simply an innocent bystander. However, the current gold standard method of quantifying and staging liver disease, histological analysis by liver biopsy, has several limitations and can have associated morbidity and even mortality. Therefore, there is a clear need for safe and noninvasive assessment modalities to determine hepatic steatosis, inflammation and fibrosis. This review covers key mechanisms and the importance of fibrosis and steatosis in the progression of liver disease. We address non-invasive imaging and blood biomarker assessments that can be used as an alternative to information gained on liver biopsy

    Competition Between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half-Filling

    Full text link
    We study the two-dimensional periodic Anderson model at half-filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.Comment: Revtex 3.0, 10 pages + 5 figures, UCSBTH-94-2

    A Maximum Entropy Method of Obtaining Thermodynamic Properties from Quantum Monte Carlo Simulations

    Full text link
    We describe a novel method to obtain thermodynamic properties of quantum systems using Baysian Inference -- Maximum Entropy techniques. The method is applicable to energy values sampled at a discrete set of temperatures from Quantum Monte Carlo Simulations. The internal energy and the specific heat of the system are easily obtained as are errorbars on these quantities. The entropy and the free energy are also obtainable. No assumptions as to the specific functional form of the energy are made. The use of a priori information, such as a sum rule on the entropy, is built into the method. As a non-trivial example of the method, we obtain the specific heat of the three-dimensional Periodic Anderson Model.Comment: 8 pages, 3 figure

    Studies on the Mating Behavior of the House Fly, Musca Domestica L.

    Get PDF
    Author Institution: Entomology Research Division, Agric, Res. Serv., U.S.D.A. Gainesville, Fla
    corecore