3 research outputs found
Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study
Background High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this
association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent
of non-genetic confounding, and are unmodifi ed by disease processes, mendelian random isation can be used to test
the hypothesis that the association of a plasma biomarker with disease is causal.
Methods We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide
polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies
(20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of
14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of
myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs
exclusively associated with LDL cholesterol.
Findings Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher,
p=8×10–
¹³) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with noncarriers.
This diff erence in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio
[OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial
infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL
cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD
increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93,
95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in
LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13,
95% CI 1·69–2·69, p=2×10–
¹⁰).
Interpretation Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial
infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into
reductions in risk of myocardial infarction.
Funding US National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the
German Federal Ministry of Education and Research
Exome-wide association study of plasma lipids in >300,000 individuals.
We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD
Rare and low-frequency coding variants alter human adult heigh
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways