323 research outputs found

    A soft X ray plane grating monochromator optimized for elliptical dipole radiation from modern sources

    Get PDF
    Abstract We describe a new but yet well proven way of making elliptically polarized dipole radiation from the BESSY II storage ring applicable to the SX700 type collimated plane grating monochromator PM3. We show that due to the limited vertical acceptance of the grating a simple use of vertical apertures is not possible in this case. Rather, deflecting the beam up or downwards by rotating the vertically collimating toroidal mirror M1 around the light axis leads to an excellent performance. The resulting detune of the photon energy can be taken into account by a readjustment of the monochromator internal plane mirror M2. The energy resolution of the beamline is not affected by the non zero roll of the collimating mirro

    Non-gapped Fermi surfaces, quasiparticles and the anomalous temperature dependence of the near-EFE_F electronic states in the CMR oxide La22x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 with x=0.36x=0.36

    Full text link
    After years of research into colossal magnetoresistant (CMR) manganites using bulk techniques, there has been a recent upsurge in experiments directly probing the electronic states at or near the surface of the bilayer CMR materials La22x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 using angle-resolved photoemission or scanning probe microscopy. Here we report new, temperature dependent, angle resolved photoemission data from single crystals with a doping level of x=0.36x=0.36. The first important result is that there is no sign of a pseudogap in the charge channel of this material for temperatures below the Curie temperature TCT_C. The second important result concerns the temperature dependence of the electronic states. The temperature dependent changes in the Fermi surface spectra both at the zone face and zone diagonal regions in kk-space indicate that the coherent quasiparticle weight disappears for temperatures significantly above TCT_C, and that the kk-dependence of the T-induced changes in the spectra invalidate an interpretation of these data in terms of the superposition of a `universal' metallic spectrum and an insulating spectrum whose relative weight changes with temperature. In this sense, our data are not compatible with a phase separation scenario.Comment: 6 pages, 4 figure

    Pseudogap and charge density waves in two dimensions

    Full text link
    An interaction between electrons and lattice vibrations (phonons) results in two fundamental quantum phenomena in solids: in three dimensions it can turn a metal into a superconductor whereas in one dimension it can turn a metal into an insulator. In two dimensions (2D) both superconductivity and charge-density waves (CDW) are believed to be anomalous. In superconducting cuprates, critical transition temperatures are unusually high and the energy gap may stay unclosed even above these temperatures (pseudogap). In CDW-bearing dichalcogenides the resistivity below the transition can decrease with temperature even faster than in the normal phase and a basic prerequisite for the CDW, the favourable nesting conditions (when some sections of the Fermi surface appear shifted by the same vector), seems to be absent. Notwithstanding the existence of alternatives to conventional theories, both phenomena in 2D still remain the most fascinating puzzles in condensed matter physics. Using the latest developments in high-resolution angle-resolved photoemission spectroscopy (ARPES) here we show that the normal-state pseudogap also exists in one of the most studied 2D examples, dichalcogenide 2H-TaSe2, and the formation of CDW is driven by a conventional nesting instability, which is masked by the pseudogap. Our findings reconcile and explain a number of unusual, as previously believed, experimental responses as well as disprove many alternative theoretical approaches. The magnitude, character and anisotropy of the 2D-CDW pseudogap are intriguingly similar to those seen in superconducting cuprates.Comment: 14 pages including figures and supplementary informatio

    Band dependent emergence of heavy quasiparticles in CeCoIn5

    Full text link
    We investigate the low temperature (T << 2 K) electronic structure of the heavy fermion superconductor CeCoIn5 (Tc_c = 2.3 K) by angle-resolved photoemission spectroscopy (ARPES). The hybridization between conduction electrons and f-electrons, which ultimately leads to the emergence of heavy quasiparticles responsible for the various unusual properties of such materials, is directly monitored and shown to be strongly band dependent. In particular the most two-dimensional band is found to be the least hybridized one. A simplified multiband version of the Periodic Anderson Model (PAM) is used to describe the data, resulting in semi-quantitative agreement with previous bulk sensitive results from de-Haas-van-Alphen measurements.Comment: 6 pages, 3 figure

    Non-monotonic pseudo-gap in high-Tc cuprates

    Full text link
    The mechanism of high temperature superconductivity is not resolved for so long because the normal state of cuprates is not yet understood. Here we show that the normal state pseudo-gap exhibits an unexpected non-monotonic temperature dependence, which rules out the possibility to describe it by a single mechanism such as superconducting phase fluctuations. Moreover, this behaviour, being remarkably similar to the behaviour of the charge ordering gap in the transition-metal dichalcogenides, completes the correspondence between these two classes of compounds: the cuprates in the PG state and the dichalcogenides in the incommensurate charge ordering state reveal virtually identical spectra of one-particle excitations as function of energy, momentum and temperature. These results suggest that the normal state pseudo-gap, which was considered to be very peculiar to cuprates, seems to be a general complex phenomenon for 2D metals. This may not only help to clarify the normal state electronic structure of 2D metals but also provide new insight into electronic properties of 2D solids where the metal-insulator and metal-superconductor transitions are considered on similar basis as instabilities of particle-hole and particle-particle interaction, respectively

    National survey on prescription of cardiovascular drugs among outpatients with coronary artery disease in Switzerland.

    Get PDF
    Secondary prevention of coronary artery disease markedly reduces cardiovascular mortality and non-fatal endpoints. Outpatient care of subjects with coronary artery disease has been assessed in several European countries, but no current data is available for Switzerland. A random sample of office-based physicians across Switzerland recorded current drug prescription of outpatients with coronary artery disease in the years 2000/2001 by means of a mail questionnaire. We assessed treatment frequencies according to different patient characteristics. 565 patients were included (mean age 68 +/- 11 years, 75% male). There was no evidence for differences in drug utilisation among the regions. Drug prescription rates for antithrombotic agents, beta-blockers, ACE-inhibitors/angiotensin receptor blockers and lipid lowering drugs were 91%, 58%, 50% and 63% respectively. Lower treatment rates were observed among patients &gt;70 years and in those without a history of myocardial infarction or coronary revascularisation. Forty-nine percent of the patients had a blood pressure &gt;140/&gt;90, and 60% had lipid readings above the intervention cut-off according to the Swiss recommendations. Among those without a history of myocardial infarction or coronary revascularisation, the respective figures were 60% and 80%. Compared to former surveys evidence based drug prescription has improved in Switzerland. Despite this, therapeutic goals for cholesterol levels and blood pressure are not being reached in a large proportion of patients. A high risk group for under use of evidence based drugs are patients without a history of myocardial infarction or coronary revascularisation

    Origin of the peak-dip-hump structure in the photoemission spectra of Bi2212

    Full text link
    The famous peak-dip-hump lineshape of the (\pi,0) photoemission spectrum of the bilayer Bi HTSC in the superconducting state is shown to be a superposition of spectral features originating from different electronic states which reside at different binding energies, but are each describable by essentially identical single-particle spectral functions. The 'superconducting' peak is due to the antibonding Cu-O-related band, while the hump is mainly formed by its bonding counterpart, with a c-axis bilayer coupling induced splitting of about 140 meV.Comment: 5 pages: text + 4 figures, revtex (Fig.2 is replaced by more suitable one

    CeFePO: f-d hybridization and quenching of superconductivity

    Get PDF
    Being homologue to the new, Fe-based type of high-temperature superconductors, CeFePO exhibits magnetism, Kondo and heavy-fermion phenomena. We experimentally studied the electronic structure of CeFePO by means of angle-resolved photoemission spectroscopy. In particular, contributions of the Ce 4f-derived states and their hybridization to the Fe 3d bands were explored using both symmetry selection rules for excitation and their photoionization cross-section variations as a function of photon energy. It was experimentally found - and later on confirmed by LDA as well as DMFT calculations - that the Ce 4f states hybridize to the Fe 3d states of d_{3z^2-r^2} symmetry near the Fermi level that discloses their participation in the occurring electron-correlation phenomena and provides insight into mechanism of superconductivity in oxopnictides.Comment: 5 pages, 3 figure

    Modifications to the Machine Optics of BESSY II Necessitated by the EMIL Project

    Get PDF
    The Helmholtz Zentrum Berlin and the Max Planck Society are going to build a new dedicated X ray beam line at the synchrotron light source BESSY II which will be used for analyzing materials for renewable energy generation. The new large scale project has been dubbed EMIL. In this document we present the modifications to the machine optics and to what extent these changes affect the performance of BESSY I
    corecore