460 research outputs found

    A Note on the Cosmological Dynamics in Finite-Range Gravity

    Full text link
    In this note we consider the homogeneous and isotropic cosmology in the finite-range gravity theory recently proposed by Babak and Grishchuk. In this scenario the universe undergoes late time accelerated expansion if both the massive gravitons present in the model are tachyons. We carry out the phase space analysis of the system and show that the late-time acceleration is an attractor of the model.Comment: RevTex, 4 pages, two figures, New references added, To appear in IJMP

    Global Alfven Wave Heating of the Magnetosphere of Young Stars

    Get PDF
    Excitation of a Global Alfven wave (GAW) is proposed as a viable mechanism to explain plasma heating in the magnetosphere of young stars. The wave and basic plasma parameters are compatible with the requirement that the dissipation length of GAWs be comparable to the distance between the shocked region at the star's surface and the truncation region in the accretion disk. A two-fluid magnetohydrodynamic plasma model is used in the analysis. A current carrying filament along magnetic field lines acts as a waveguide for the GAW. The current in the filament is driven by plasma waves along the magnetic field lines and/or by plasma crossing magnetic field lines in the truncated region of the disk of the accreting plasma. The conversion of a small fraction of the kinetic energy into GAW energy is sufficient to heat the plasma filament to observed temperatures.Comment: Submitted to ApJ, aheatf.tex, 2 figure

    A symplectic realization of the Volterra lattice

    Full text link
    We examine the multiple Hamiltonian structure and construct a symplectic realization of the Volterra model. We rediscover the hierarchy of invariants, Poisson brackets and master symmetries via the use of a recursion operator. The rational Volterra bracket is obtained using a negative recursion operator.Comment: 8 page

    Escaping the complexity-bitrate-quality barriers of video encoders via deep perceptual optimization

    Get PDF
    We extend the concept of learnable video precoding (rate-aware neural-network processing prior to encoding) to deep perceptual optimization (DPO). Our framework comprises a pixel-to-pixel convolutional neural network that is trained based on the virtualization of core encoding blocks (block transform, quantization, block-based prediction) and multiple loss functions representing rate, distortion and visual quality of the virtual encoder. We evaluate our proposal with AVC/H.264 and AV1 under per-clip rate-quality optimization. The results show that DPO offers, on average, 14.2% bitrate reduction over AVC/H.264 and 12.5% bitrate reduction over AV1. Our framework is shown to improve both distortion- and perception-oriented metrics in a consistent manner, exhibiting only 3% outliers, which correspond to content with peculiar characteristics. Thus, DPO is shown to offer complexity-bitrate-quality tradeoffs that go beyond what conventional video encoders can offe

    Auxiliary matrices for the six-vertex model at roots of 1 and a geometric interpretation of its symmetries

    Full text link
    The construction of auxiliary matrices for the six-vertex model at a root of unity is investigated from a quantum group theoretic point of view. Employing the concept of intertwiners associated with the quantum loop algebra Uq(sl~2)U_q(\tilde{sl}_2) at qN=1q^N=1 a three parameter family of auxiliary matrices is constructed. The elements of this family satisfy a functional relation with the transfer matrix allowing one to solve the eigenvalue problem of the model and to derive the Bethe ansatz equations. This functional relation is obtained from the decomposition of a tensor product of evaluation representations and involves auxiliary matrices with different parameters. Because of this dependence on additional parameters the auxiliary matrices break in general the finite symmetries of the six-vertex model, such as spin-reversal or spin conservation. More importantly, they also lift the extra degeneracies of the transfer matrix due to the loop symmetry present at rational coupling values. The extra parameters in the auxiliary matrices are shown to be directly related to the elements in the enlarged center of the quantum loop algebra Uq(sl~2)U_q(\tilde{sl}_2) at qN=1q^N=1. This connection provides a geometric interpretation of the enhanced symmetry of the six-vertex model at rational coupling. The parameters labelling the auxiliary matrices can be interpreted as coordinates on a three-dimensional complex hypersurface which remains invariant under the action of an infinite-dimensional group of analytic transformations, called the quantum coadjoint action.Comment: 52 pages, TCI LaTex, v2: equation (167) corrected, two references adde

    Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core

    Get PDF
    SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude–longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat–lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest

    Asymptotic Infrared Fractal Structure of the Propagator for a Charged Fermion

    Full text link
    It is well known that the long-range nature of the Coulomb interaction makes the definition of asymptotic ``in'' and ``out'' states of charged particles problematic in quantum field theory. In particular, the notion of a simple particle pole in the vacuum charged particle propagator is untenable and should be replaced by a more complicated branch cut structure describing an electron interacting with a possibly infinite number of soft photons. Previous work suggests a Dirac propagator raised to a fractional power dependent upon the fine structure constant, however the exponent has not been calculated in a unique gauge invariant manner. It has even been suggested that the fractal ``anomalous dimension'' can be removed by a gauge transformation. Here, a gauge invariant non-perturbative calculation will be discussed yielding an unambiguous fractional exponent. The closely analogous case of soft graviton exponents is also briefly explored.Comment: Updated with a corrected sign error, longer discussion of fractal dimension, and more reference

    The twisted XXZ chain at roots of unity revisited

    Full text link
    The symmetries of the twisted XXZ spin-chain (alias the twisted six-vertex model) at roots of unity are investigated. It is shown that when the twist parameter is chosen to depend on the total spin an infinite-dimensional non-abelian symmetry algebra can be explicitly constructed for all spin sectors. This symmetry algebra is identified to be the upper or lower Borel subalgebra of the sl_2 loop algebra. The proof uses only the intertwining property of the six-vertex monodromy matrix and the familiar relations of the six-vertex Yang-Baxter algebra.Comment: 10 pages, 2 figures. One footnote and some comments in the conclusions adde

    Multitemporal generalization of the Tangherlini solution

    Full text link
    The n-time generalization of the Tangherlini solution [1] is considered. The equations of geodesics for the metric are integrated. For n=2n = 2 it is shown that the naked singularity is absent only for two sets of parameters, corresponding to the trivial extensions of the Tangherlini solution. The motion of a relativistic particle in the multitemporal background is considered. This motion is governed by the gravitational mass tensor. Some generalizations of the solution, including the multitemporal analogue of the Myers-Perry charged black hole solution, are obtained.Comment: 14 pages. RGA-CSVR-005/9

    Music Tune Restoration Based on a Mother Wavelet Construction

    Get PDF
    It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one
    corecore