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Abstract. SL-AV (semi-Lagrangian, based on the abso-
lute vorticity equation) is a global hydrostatic atmospheric
model. Its latest version, SL-AV20, provides global oper-
ational medium-range weather forecast with 20km resolu-
tion over Russia. The lower-resolution configurations of SL-
AV20 are being tested for seasonal prediction and climate
modeling.

The article presents the model dynamical core. Its main
features are a vorticity-divergence formulation at the un-
staggered grid, high-order finite-difference approximations,
semi-Lagrangian semi-implicit discretization and the re-
duced latitude—longitude grid with variable resolution in lat-
itude.

The accuracy of SL-AV20 numerical solutions using a re-
duced lat-lon grid and the variable resolution in latitude is
tested with two idealized test cases. Accuracy and stability of
SL-AV20 in the presence of the orography forcing are tested
using the mountain-induced Rossby wave test case. The re-
sults of all three tests are in good agreement with other pub-
lished model solutions. It is shown that the use of the reduced
grid does not significantly affect the accuracy up to the 25 %
reduction in the number of grid points with respect to the reg-
ular grid. Variable resolution in latitude allows us to improve
the accuracy of a solution in the region of interest.

1 Introduction

Atmospheric general circulation models (AGCMs) are basic
tools for weather forecasting from several days to seasons.
Also, such models are essential building blocks of Earth sys-

tem models used for climate simulations. AGCMs consist of
a dynamical core responsible for solution of dynamics equa-
tions of a resolvable flow component and the package rep-
resenting sub-grid-scale processes (often in a parameterized
way).

SL-AV20 is the latest version of the hydrostatic AGCM de-
veloped at the Institute of Numerical Mathematics, Russian
Academy of Sciences (INM RAS) in cooperation with the
Hydrometeorological Centre of Russia (HMCR). SL-AV is
the model acronym (semi-Lagrangian, based on the absolute-
vorticity equation), and 20 indicates the targeted horizontal
resolution over the territory of Russia. The SL-AV20 dynam-
ical core is developed by the coauthors, while the greater
part of subgrid-scale parameterizations is adopted from the
ALADIN/LACE model (Geleyn et al., 1994; Gerard et al.,
2009).

SL-AV20 is accepted as a basic method for operational
medium-range weather forecast in the HMCR in 2015. The
lower-resolution version of this model is expected to be ap-
plied in the HMCR long-range forecasting system. Also,
SL-AV20 is considered a starting point for developing the
new atmospheric component of the INM climate model (IN-
MCM, Volodin et al., 2017). Among the papers that discuss
SL-AV model numerics, e.g., vorticity-divergence formula-
tion and basic horizontal discretizations (Tolstykh, 2002), the
variable-resolution version (Tolstykh, 2003), the new solver
for reconstruction of the wind from vorticity and divergence,
the mass-conservative shallow water formulation (Tolstykh
and Shashkin, 2012), and the inherently mass-conserving
version (Shashkin and Tolstykh, 2014), there is no one that
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would put all the developments together. This article de-
scribes the present state of the SL-AV20 dynamical core.

While developing a dynamical core, we want it to have a
given accuracy combined with a minimum wall-clock time
for a given number of processors. We call this the computa-
tional efficiency. Furthermore, as the dynamical core can be
used at a range of horizontal and vertical resolutions typical
for numerical weather prediction and climate simulations, it
is desirable to maintain dynamical core computational effi-
ciency at a maximum possible range of resolutions. This is a
somewhat contradictory requirement. Indeed, using a global
dynamical core at the maximum possible resolution of a few
kilometers ultimately requires the dynamical core to use ef-
ficiently up to tens of thousands of cores. This is not so easy
to achieve if a semi-implicit time-integration scheme is used.

Our approach to the dynamical core design is based on
the following choices. We use a semi-implicit (SI) time-
stepping scheme (Robert et al., 1985) and a semi-Lagrangian
(SL) treatment of advection (review — Staniforth and Coté,
1991). This combination allows us to circumvent Courant—
Friedrichs—Lewy stability limitation for both wind speed and
inertia-gravity wave phase speed. Practically, this means that
the time step is much larger than with the Eulerian treatment
of advection and/or the explicit time-stepping scheme, how-
ever, at the cost of solving the Helmholtz equation at each
time step and having larger communication costs in parallel
implementation. The unstaggered grid is used; i.e., scalar and
vector variables are stored at the same grid points. Therefore,
only one set of upstream trajectories needs to be computed
for the SL advection scheme (the C-grid requires three sets).
Also, this improves trajectory computation accuracy, since
the velocity components are stored at arrival points and no
spatial interpolation or averaging is needed to compute the
displacement terms at the arrival point.

Following the results of Randall (1994), the vertical com-
ponent of relative vorticity and the horizontal divergence are
used as prognostic variables to achieve good inertia-gravity
and Rossby wave dispersion properties at the unstaggered
grid. However, the reconstruction of wind velocity from vor-
ticity and divergence is needed at each time step. We use
the direct inversion of relative vorticity and divergence finite-
difference formulae, avoiding solution of Poisson problems
for stream function and velocity potential. This leads to the
accurate and efficient solver Tolstykh and Shashkin (2012).

Fourth-order finite-difference formulae are used to com-
pute gradient, divergence, and vorticity operators. Compact
finite differences were used in early versions of the SL-AV
model (Tolstykh, 2002) for their smaller truncation errors.
To improve parallel efficiency, compact finite differences are
abandoned now, except Helmholtz and velocity reconstruc-
tion solvers.

The important question for the global atmospheric model
is the choice of the horizontal grid on the sphere. The regular
latitude—longitude grid that served in the atmospheric mod-
eling for decades is now ending its era. The grid points clus-
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tering near the poles force one to use either a very small time
step for stability or special numerical techniques (polar fil-
ters, SL advection) that need excessive data transfer in the po-
lar regions and lead to scalability problems. Moreover, physi-
cal grid spacing in latitude in the polar regions can be 1 order
of magnitude (or even more) larger than the grid spacing in
longitude. This presents a difficulty for parameterizations of
sub-grid-scale processes. A significant effort is made to de-
velop models based on icosahedral (e.g., Zangl et al., 2015),
Voronoy—Delaunay (e.g., Skamarock et al., 2012), cubed-
sphere (e.g., Fournier et al., 2004), Yin-Yang (Quaddouri and
Lee, 2011) or some less popular grids on the sphere.

Unfortunately, all quasi-uniformly spaced grids proposed
to date suffer from one or more of the following problems
(as discussed in Staniforth and Thuburn, 2012): disbalance
between vector and scalar degrees of freedom (grids with
triangular or hexagonal/pentagonal cells), non-orthogonality
of the underlying coordinate system (cubed-sphere), and
overset regions or grid transition (Yin-Yang, cubed-sphere).
These issues can degrade the accuracy of atmospheric circu-
lation simulation, and cause grid imprinting and/or the occur-
rence of unphysical wave modes and some other problems.

SL-AV20 is formulated using the reduced Ilatitude—
longitude grid suggested in Kurihara (1965) but with a differ-
ent design. We believe that using a reduced grid can alleviate
most of the polar problems of the regular latitude—longitude
grid. Moreover, the reduced latitude—longitude grid is free of
problems specific to more complex quasi-uniformly spaced
grids, and is relatively easy to implement. As shown in Tol-
stykh and Shashkin (2012), the accuracy problems of re-
duced grid computations reported by Williamson (2007) and
Staniforth and Thuburn (2012) can be overcome with proper
construction of this grid (Fadeev, 2013) and using high-order
discretizations.

Another feature of SL-AV20 is the possibility of using
variable resolution in latitude. This approach is especially
suitable for Russian territory, which stretches for almost 180°
in longitude. Variable resolution in latitude with the ability
to use non-equatorially symmetric grid reduction allows us
to refine resolution in the region of interest (mid-latitudes of
the Northern Hemisphere) and to coarsen it in other regions
(e.g., Southern Hemisphere).

The article is organized as follows. The governing equa-
tions are listed in Sect. 2. Section 3 briefly presents the
SL-AV20 semi-Lagrangian advection scheme. The details of
semi-implicit temporal discretization are given in Sect. 4; the
numerical techniques for horizontal and vertical discretiza-
tion are presented in Sect. 5. The solvers for the Helmholtz
problem and wind velocity reconstruction are presented in
Sect. 6; Sect. 7 discusses the dissipation mechanisms used in
the model. Section 8 describes SL-AV20 parallel implemen-
tation. Numerical experiments are described in Sect. 9.
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2 Governing equations

Governing equations of the SL-AV model are derived from
the set of hydrostatic shallow-atmosphere primitive equa-
tions on the sphere (Holton, 2004, chap. 2). The hybrid co-
ordinate n of Simmons and Burridge (1981) is used in the
vertical.

The spherical longitude and latitude are (A, ¢), r is the
vector pointing from the center of the sphere to the point on
its surface, and a is the radius of the sphere (notations used
in the article are summarized in Appendix A). Standard def-
initions of horizontal V operator and Lagrangian derivative
% are used. The pressure is p(n) = A(n) po + B(n) ps, po is
a constant reference pressure and pj is the surface pressure.

The horizontal wind velocity is V, with # and v being its
zonal and meridional components, respectively. D =V -V
and ¢ =k -V x V are the horizontal divergence and vertical
component of relative vorticity; k = r/a is the vertical unit
vector. The vertical velocity in the hybrid coordinate system
is 7. The Coriolis parameter f = 2|2|sing, 2 is the Earth’s
angular velocity. & is the geopotential, T is the tempera-
ture, and Py is the surface geopotential. We also use virtual
temperature 7y, = R%‘:“ T; R4 is the dry air gas constant and
Rumoist = (1 — g — >_qi)Rqa + Ryq, where Ry is the gas con-
stant of water vapor, g is water vapor specific concentration,
and ¢; are liquid and solid water species specific concentra-
tions. The heat capacity of moist and dry air at constant pres-
sure are ¢, and ¢pg; ¢p includes contributions from all water
species presented. The sources/sinks of an arbitrary quantity
¥ due to subgrid/diabatic processes are denoted by Fy.

We begin with the momentum (horizontal wind) equation
in the vector form of Bates et al. (1993):

av d v
L iexT) =vo-rRT, 2L 4 Fy. )
dr dt Jy p

Subscript H denotes projection onto the surface of the
sphere. The Coriolis term is cast in the advective form (inside
d/dr) following Rochas (1990) (see also Temperton, 1997).
Using the vector form of momentum equations, we avoid
the problems related to the treatment of metric terms propor-
tional to tan ¢ near the poles. The p(n) = A(n) po + B(n) ps
is substituted into the term Vpp and the latter is rewritten as

B(n) ps
A pot Banps ¥ 0 Ps-

We recast the horizontal wind Eq. (1) using the vertical
component of absolute vorticity ¢ and horizontal divergence
D. The equation for ¢ is obtained by applying the k- Vx
operator:

d
a(§+f)=—(§“+f)D—J;+F;, (2)
I B(n)ps Rq (% dlnps ﬂalnps)
© T A(po+Bmpsaicosp \ah dp D¢ 0x
1 (817 av 317 Bu) 3)
acosg \9A an Bgo on
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The equation for the horizontal divergence D is derived from
the time-discrete form of Eq. (1) (see Sect. 4 for details).

Also, there is an option to use the divergence equation ob-
tained in an analytic way applying the V- operator to momen-
tum equations (Eq. 1 can be used; however, the derivation is
simpler with the component form — Holton, 2004):

dD B
D i pre v B G pvinpy
dr A po+ B ps
ud
+§f———f+JD+FD, 4)
ade
; 1 [9(w*+v¥)sing)
b= a’cosg A
ad ad a0 d
) )
dp \ I\ A\ g
1 on d an o
( mou cosw—n—v) . 5
acose \0A 817 dp an

Using the analytic divergence Eq. (4) gives a possibility of
using the same spatial approximation for V2® in both ex-
plicit and implicit parts of time-discrete equations. There-
fore, we can expect better dispersion properties for the short-
est inertia-gravity waves (according to Caluwaerts et al.,
2015), however, at the cost of computing additional nonlinear
terms. It is interesting to note that, unlike Heikes and Randall
(1995), who formulated vorticity and divergence equations
in terms of true scalars (¢, D, ®, stream function and veloc-
ity potential), we use components of vector quantities V and
Vo.

The thermodynamic equation is readily formulated for vir-

tual temperature 7. This can be done cons1der1ng dr; =

fl‘;‘c’l“‘ ar 4 RT ng;‘““‘ and then expandmg and dR‘""“‘ on the
right- hand side using the thermodynamic equatlon (McDon—
ald and Haugen, 1993) and water species transport equations

(see below).

d(Tv + V(Tl)cbs) _ Rumoist Tv ( Ps B
dr Cp A(n) po+ B(n) ps
B(n) ps dyIn ps) .
A(mpo+ B(m)ps dt
m
Fr,+ymV -V, +i Van” @, ©)

Rmmst R
Fr,= == Fr —i—T[(——l) ZFq} @

where d_Iz{ is the horizontal Lagrangian derivative with ne-
glected vertical displacement. The energy conversion term

%i—’; is rewritten in terms of In pg and an analog of ver-

tical velocity § = p——n following McDonald and Haugen
(1993). The term y (1) ®s was proposed by Ritchie and Tan-
guay (1996) to suppress spurious orographic resonance; also,
it smooths the temperature field near orographic variations
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and contributes positively to the accuracy of temperature ad-
vection.

The continuity equation is written in terms of In pg and $,
similar to Eq. (5) of McDonald and Haugen (1993):

9B dy (1 L% ) %—2po+%—§psD 95
[ — np _ = —— —_—
an dr ’ RaTconst Ps an
aB Dy
+ 2y V( ) ®)
on RaTeonst
The term ( Rd%onsl) was also proposed by Ritchie and Tan-

guay (1996). The continuity equation can also be written in
the form of mass conservation in an arbitrary Lagrangian cell
V(t) (Lauritzen et al., 2008):
1d 0
- (—p)dV=0. )
g dr an

V(1)

Recall that g~'9p/dn is the density in the n-coordinate.
We use this form of continuity equation for locally mass-
conserving SL discretization.

The hydrostatic balance equation is

dlnp
on

P
877_

—RqTy (10)

The equations for transport of water vapor and other water
species are all written in the same form:

Yk, ()
d ap _ ap
dl/ Bn)qdv_/(an)quV' (12)

V() V@)

The finite-volume form (12) is used for locally mass-
conserving discretization.

Boundary conditions for the above Egs. (2)—(12) are 7 =0
at the lower n =1 and upper 1 = np boundaries. Also, it
is assumed that B(n) = 1, A(n) =0 when n = 1, normally
B = 0 above some 71, > nwp; however, the model can work
in the pure o-coordinate mode, when B(n) =n, A(n) =0
everywhere.

3 Semi-Lagrangian advection
3.1 Conventional semi-Lagrangian advection

Lagrangian time derivatives in the prognostic equations
given in Sect. 2 are approximated in time as dy/dr =
(Y"1 — ")/ At, where the superscript indicates time level
t" = nAt; subscript * indicates that quantity v is evalu-
ated at the departure position of the Lagrangian parcel (at
t"). Under the SL approach, each point of a fixed computa-
tional grid is the arrival position of some Lagrangian particle.
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The advection equation dir/df = 0 is discretized in time as
Y"1 =y SL approximation is not subject to the Courant—
Friedrichs—Lewy stability limitation, so At can be chosen
from accuracy considerations that greatly contribute to the
computational efficiency.

The departure position of the Lagrangian parcel arriving
at some grid point can be approximately found by integrat-
ing the equation ‘é—; = V one step back in time. Following the
SETTLS scheme (Hortal, 2002), we approximate this equa-
tion as

il 1

At 2
where V"t De = 2y _y"=1 The iterative approach is used
to solve Eq. (13):

(v" + ka"“)e), (13)

At
Py =" = S (Vv G0), (14)

where *m indicates the departure point position found at mth
iteration. Additional geometric approximations are needed it-
erating Eq. (14) to account for spherical geometry and shal-
low atmosphere approximation (see Temperton et al., 2001).

The quantities at the departure positions of Lagrangian
particles are evaluated using interpolation. We use 3-D
tensor-product cubic Hermite interpolation for advective
terms of equations (the terms that arise from SL approxima-
tion of d/dt). Trilinear interpolation is used for components
of V in iterative process (14) and non-advective terms of
equations. The change in the direction of coordinate system
unit vectors between departure and arrival positions should
be taken into account when interpolating the vector compo-
nents:

d'/f_L 1/’)\ _ 1//1*
T-m((0)-=(1) >

where fR is the rotation matrix (see Temperton et al., 2001,
detailed derivation in Staniforth et al., 2010).

3.2 Mass-conservative semi-Lagrangian advection

The disadvantage of a semi-Lagrangian approach as for-
mulated in Sect. 3.1 is the lack of tracer mass conserva-
tion. To address this problem, SL-AV20 incorporates the
finite-volume SL Conservative Cascade Scheme (CCS-3D,
Shashkin et al., 2016). Finite-volume SL discretization starts
with the advection equation in form (12) where the arrival
volume V(¢"*1) coincides with grid cell V; j1 (I 1s the vertical
index):

ap n+1 31) n
(—q) SijAm=/(—(q+Fth)) av.  (16)
/YA an
ijl *
ijl
(‘)Vijl is quantity averaged over V;j;; S;; and S;;An are
the cell horizontal square and volume, respectively. Cell-
averaged tracer density g—f;q is chosen as a prognostic vari-

able.
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The departure cell V(") = V;; ; is defined by its vertices,
i.e., the departure positions of Lagrangian parcels arriving at
the vertices of V;j; at "1, Departure cell vertices are found
with interpolation of known coordinates of departure cell
centers. The latter are departure positions of the Lagrangian
parcels arriving at the grid points computed using Eq. (13).

To approximate the integrals over the departure cells in
Eq. (16), we extend the 2-D Conservative Cascade Scheme
by Nair et al. (2002) to 3-D space. Following the ideas
of Nair et al. (2002), we split the 3-D integration problem
into the sequence of three 1-D integrations that greatly con-
tributes to the computational efficiency. The resulting locally
mass-conserving SL advection scheme Shashkin et al. (2016)
uses a piecewise parabolic subgrid tracer density distribu-
tion (Colella and Woodward, 1984) and incorporates several
monotonicity and positivity preserving options.

4 Time discretization
4.1 Basic semi-implicit formulation

The non-advective terms of prognostic equations (from
Sect. 2) are approximated using the combination of the
Crank—Nicolson scheme with the pseudo-second-order de-
centering (Temperton et al., 2001) for linear terms and the
SETTLS scheme (Hortal, 2002) for nonlinear terms. For the
equation

dy

— =Ly +NW), a7
dr

where i is an arbitrary scalar or vector variable the scheme
writes as

Yt — oy
At
1+¢€
2

1+e€
2
€
Lyr - (Lw;"“)f 4 Lw") . (18)

1
P (n+1)e n n+1
= (N(w)* FN@) ) + "y

+

The absolute vorticity Eq. (2) is discretized in time as fol-
lows:

At
§n+l +7fDn+l — R{'a (19)

where R; is a combination of time level n and extrapolated in
time ((n + 1).) quantities (see Appendix B for details on the
right-hand-side terms of the SI system of equations); no de-
centering is applied to term f D. We use the background state
with constant reference temperature T and reference pressure
p =AM po+ B(n)ps (ps is a constant) to extract the linear
terms in Egs. (1), (4), (6), and (8). First, the pressure gradi-
ent term of momentum equations (1) is split into linear and
nonlinear contributions:

n
B(n) ps

VI ®,— | RyTdIn +—————————RyTIy\Vinps =
(S 1/ o ”) AGpo+ BGpps 4V
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(vG) .

——
linear term

n
- p B(n) ps -
V| Ry(Ty—T)dln=+ ————— Ry(1v - T)VI 2
l/d(v a5+ St s sipps (B T) Vs 20

nonlinear term

n
G:CDS—/Rd(TV—T)dlnﬁ+Rd7_“lnps. Q1)
1

Here we use the fact that V[/R¢Tdlnp=
RaT[Vpm)/p() — Vinps] = RaT[B(n) ps/(A(n) po +
B(n)ps) — 1]VInps. A similar relation is derived for
V? of pressure in the analytic divergence Eq. (4). The
approximation of vertical integrals is described in Sect. 5.5.
The time-discretized divergence equation is written as

1

Dl 4 (;—E)Atsz"'H —V.Ry, (22a)
At 1

Dn-’rl _ Tfé-n-f‘l + %Atv2cn+l — RD~ (22b)

Equation (22a) is the divergence equation derived from the
momentum equation (1) discretized in time via Eq. (18);
Ry is the right-hand side (RHS) of the corresponding vector
equation. The RHS term V- Ry is calculated with the discrete
divergence operator from Sect. 5.2. Equation (22b) is based
on the analytic divergence Eq. (4). This equation allows us to
use the same Crank—Nicolson discretization in time for — f¢
and V2G, the two terms representing geostrophic balance.

In the thermodynamic equation (6), the Lagrangian time
derivative of In py is discretized in the SL manner in the linear
part of the energy conversion term, whereas it is replaced
by the RHS of continuity Eq. (8) in the nonlinear part. The
resulting time-discrete equation is

_ RdT ﬁs
cpd A(M)po+ B() ps

1+¢€
(B(n)lnp?“ +—

Tvl’l+l

Am‘”“) = Ry. (23)

The continuity equation (8) is discretized as follows:

8_Blnp£,+1 n 1+€At (8A/877)p0:|'(83/877)135 el
an 2 Ps
l14+e 3s"t!
+ At = Rp. (24)
2 on

Integration of Eq. (24) from model top to the ground provides
the expression for In p+! independent of §"+!, whereas the
integration to the arbitrary level 1 gives the "1

1+4+¢€
(1= BOwp) npi+! = ——=ar
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=1
"/ (BALo OB 5
2

+ RP)dTI, (25)
N="Ntop

1+e . 1+e
—— 88" ) = — (B — Bnp) ) Inpit! — — 1

D4 Rp)dn. (26)

77 ((8A/3n)po+(83/3n)ﬁs
A
N=MNtop

The RHS of Eq. (25) can easily be substituted for the In p+!
term in Eq. (26), providing an equation for §"*! which de-
pends only on the D"*! unknown quantity.

Equations (19), (22), (23), (25), and (26) and the defini-
tion of linear geopotential G (21) form the system of linear
equations for time-level n+1 variables (¢, D, Ty, In pg, s, G).
The solution procedure for this system is as follows. First,
if an analytically derived divergence equation (22b) is used,
the relative vorticity "*! is excluded by substitution from
Eq. (19). Then, Egs. (25) and (26) are substituted in Eq. (23)
to obtain an expression for 7"*! that depends only on D"*!.
This expression and Eq. (25) are used to eliminate 7*! and
In p"*1 in the G"*! definition Eq. (21). Therefore, we obtain
the pair of equations that contains only G"*! and D"*! un-
knowns. With the aid of vertical discretization (see Sect. 5.5),
this pair can be written as

1
G+ %AtMD —H, 27)
212 1 At
d+al 27D+ +€AtV2G=RD+oefTR;, (28)

where G, D and Ry are columns of Nlev (number of model
levels) components, with the /th component representing
the corresponding horizontal field at the level [; H = &, +
RiAR7 +M'Rp, M, M, and A are the matrices of discrete
vertical operators (resulting from vertical integration; see de-
tails in Appendix C). The coefficient « = 0 is used for the
standard divergence equation (22a) and o = 1 for the analyt-
ically derived divergence equation (22b); R p corresponds to
the RHS term of the relevant divergence equation.

Substituting D from Eq. (28) in Eq. (27) and using
eigenvalue decomposition M = PAP~! results in Nlev 2-D
Helmholtz problems for components of P~'G vector. The
solution procedure for Helmholtz problems is described in
Sect. 6.2. Once G is found, we can find the divergence D
with Eq. (27) and use it to calculate In p?+1, §"+1 T7+1 and
¢+ (see Egs. 25, 26, 23, 19). The 1 + 1th time-step calcu-
lations are finalized by reconstruction of the horizontal wind
V+1 as described in Sect. 6.1 and calculation of 7 and re-
calculation of § (Sect. 5.5).

We have also implemented an iterative time-integration
scheme (Goyman, 2015) in addition to the time discretiza-
tion described above. The basic discretization is used at
first iteration to obtain first-guess n+ 1 time-step fields
(&,D,T,Inps, V). At the second iteration, we replace the
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time-extrapolated nonlinear terms N D¢ of the equations
and time-extrapolated wind velocity (u, v, 7)**Ve involved
in the upstream trajectory computations with those obtained
using n 4 1 time-step first-guess values. Using this iterative
approach allows us to improve stability and use larger time
steps without degrading accuracy.

4.2 Inherently mass-conserving model semi-implicit
formulation

The inherently mass-conserving (IMC) version of the model
(Shashkin and Tolstykh, 2014) uses a continuity equation in
the finite-volume form (9). The nonlinearity of this equa-
tion is hidden in the trajectory computation or equivalently
in the evolution of the Lagrangian cell V(¢). The equation
is linearized using the orography-dependent reference pres-
sure profile p™ = Apo+ B pgef, where pgef = 1013.25hPa x

exp(—®s/(RqT)). The following equation is

ref 9

]G (o

V(1) V()
where p’ = p — p™. The equation for mass-conservative up-
date of py is obtained with discretization of Eq. (29) using the
scheme (18) and its integration from model top to bottom:

(1= BOwop) iy (2! = pT)

ref

[=Nlev f
1 8 Ie:
-3 (_ “av (2
= 2 on
P ref
SAIV~( (‘I; V")) Sij Ani+ (30)
n Viji
l:NZlev (ap/) 14+¢
an 2

€ apref (n41)
+—AlV(WV ) dV,

V"+1)+

ALV - (ag—:fv”)

where (ps)s; is the surface pressure averaged over S;j.
The departure volume integrals are evaluated using CCS-3D
(Shashkin et al., 2016).

Using an orography-dependent reference pressure profile
is crucial for stability in mountainous regions. The term

ref
v. (35—”
model prognostic variables, so it is very difficult to solve the
system of equations similar to those formulated in Sect. 4.1,
but with a mass-conservative equation for pg“ (30) instead
of Eq. (25). Therefore, the following procedure is imple-
mented. First, we run a time step of the non-mass-conserving
model version, solve the semi-implicit system as it is formu-
lated in Sect. 4.1, and obtain the n + 1 time-step horizon-
tal wind V"T!, Then the mass-conservative update of pq,

Eq. (30), is calculated.

V"+1), however, cannot be expanded in terms of
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We achieve inherent mass conservation, however, at the
cost of introducing some inconsistency between the surface
pressure and horizontal wind fields. This results in a slight
noise in the regions with steep orography, but does not sig-
nificantly affect the model accuracy. The greater problem not
solved yet is the consistency between dry air and tracer mass,
so the IMC model version now is rather a research option.

5 Spatial discretization
5.1 Horizontal grid

The SL-AV20 model incorporates a reduced latitude—
longitude grid with variable resolution in latitude. The grid
consists of points located on the latitudes ¢ =¢;, j€
[0, Nlat] with longitude spacing AA;, (A, ¢);; = (iAXj, @;).
The number of points on a grid latitude is reduced polewards
of the Equator. The pole points are assumed to be the grid
latitudes. The regular latitude—longitude grid is the special
case of the grid described above with constant latitude spac-
ing and the same number of points on each grid latitude.

Formally, the model algorithms can work with any set of
@; and AX;. However, the choice of these crucially affects
accuracy. The grids are constructed with the algorithm of
Fadeev (2013). This algorithm generates the set of ¢; that
satisfy grid smoothness constraints (to avoid spurious wave
reflection at the regions of abrupt spacing change) and match
the desired grid spacing latitude dependence as close as pos-
sible. Then, given ¢; and the total number of grid points, the
algorithm optimizes A ; to minimize the error of interpola-
tion of an analytic test function to some finer grid.

5.2 Discretization of horizontal gradient, divergence
and vorticity operators

The following fourth-order accurate formula is applied to
evaluate the first derivative:

(%) _ Yot = 279 + 2TYi41 — Yis2
dx /i+1/2 24Ax

where x can be either ¢ or A; ¥ is a scalar quantity or vector
component. However, we use an unstaggered grid and need
the values of % to be located at the same points as ¥; thus,

we interpolate (a—w)
P x Jiv12

using fourth-order Lagrangian interpolation. To calculate di-

vergence and vorticity, fourth-order Lagrangian interpolation

is used to obtain vector components at the grid half-nodes.

Then a second-order locally conservative formula is applied

to calculate the meridional derivative:

I 9ycosg  Yjt1/2€089j41/2—Vj—1/2C08¢;_1/2

acosg J¢ a(singjy1/2 —sing;_1,2)

+0(Ap?). (32)

The longitudinal derivative is evaluated with Eq. (31) as in
the gradient operator.

+0(AxY), 3D

to the integer nodes of the grid
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To account for the variable resolution in latitude, we intro-
duce pseudo-latitude ¢, such that the grid is equally spaced
in ¢’ (following Tolstykh, 2003). Then the meridional deriva-

i M W 3¢’
tive 3¢ 8@

factor /\/l = d ¢ are calculated using Eq. (31).
The 10ng1tud1nal derivatives are calculated in the grid-
point space, whereas Fourier representation in longitude

¥ (pj. 2) = Ao(9))/2+ D _(Ai(pj) cos(kr) + Bi(pj)sin(kr))  (33)
k

The derivative gw, and inverse mapping

is used to calculate meridional derivatives on the reduced
lat-lon grid. The meridional derivatives of Ak, ék are cal-
culated and then the inverse Fourier transform is applied to
obtain the values of derivatives in grid-point space. If N; is
the number of points at the grid latitude ¢;, the wavenum-
bers k > N;/2 — 1 can not be represented, so it is natural to

set Ak, I§’k and their derivatives to zero at this latitude.

The disadvantage of Fourier transform is the necessity
of global communications in parallel implementation, which
could lead to poor scalability. The calculation of meridional
derivatives in the grid point space is implemented as an op-
tion. The points in the reduced grid are not aligned along
meridian lines. Therefore, the interpolation along longitude
is carried out first to obtain the values of i at the needed
longitude and then Eq. (31) is applied to obtain half-integer
values of derivatives. The similar approach was applied in
(Jablonowski et al., 2009). We have tested this grid point al-
gorithm and there is no impact on the results for the baro-
clinic test case presented in Sect. 9 as compared with the
computations in Fourier space as described above.

Calculation of meridional derivatives near the poles using
Eq. (31) requires the values of  at virtual latitudes ¢_; =
—7/2— (g1 +7/2) and Niat+1 = 70/2+ (/2 — ¢N1ar—1)- I
one continues the meridional line A beyond the pole, it will
coincide with A + . Thus ¥ (¢—1, 1) = (—=1)" ¥ (¢1, A+ 7),
where v is O for scalar quantities and 1 for vector compo-
nents (the latter is due to change of basis vectors orienta-
tion after = phase shift). It is easy to show that Ak (p—1) =
(- DFY Ay (¢1), the similar relations take place for By (p—1),
Ar(@Ntacr1). Be(@xia1)-

To evaluate divergence and vorticity at the pole point, one
uses the fact that the scalar quantities can have only Ag non-
zero Fourier coefficients at the pole point to be uniquely de-
fined. The fourth-order accurate Lagrangian interpolation is
applied to obtain Ag polar values from known Ag at adjacent
latitudes (including v1rtual latltudes) Similarly, vector com-
ponents can have only A1, By non-zero Fourier coefficients
at the pole point (this corresponds to the unique value of the
vector quantity at the pole point and basis vectors dependent
on longitude). Fourier coefficients of gradient components
are also interpolated to the pole point.

The IMC version of the model (Shashkin and Tolstykh,
2014) also requires calculation of a flux-divergence operator
V- (¢V), where ¥ is some scalar function. For mass con-
servation >, V- (¥ V);;S;j = 0 over the whole sphere must
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hold up to machine precision. This operator is discretized (as
described in Tolstykh and Shashkin, 2012) in the flux form
with fourth-order accuracy. In the IMC version, this oper-
ator with ¢ =1 replaces the divergence operator described
above.

5.3 Discretization of the horizontal Laplace operator

The Laplace operator arises in the time-discrete divergence
equation (22). In the case of Eq. (22a) derived in a dis-
crete way from momentum equations (1) (which is consid-
ered standard in SL-AV20) V2 appears in the implicit part,
whereas in the explicit part it stands as the product of discrete
divergence and gradient operators (see Sect. 4 for details). If
analytical divergence equation (22b) is used, V? is present in
both implicit and explicit parts of equation.

If the discrete-derived divergence equation is used, the
compact finite-difference (CompFD) approximation of the
meridional derivatives in the Laplace operator is applied,
for their smaller truncation errors. CompFDs discretization
require matrix inversion that generaly causes the parallel
scalability problems. However, using CompFDs to discretize
Laplace operator in the implicit part of divergence equation
is not a computational burden, since it is already involved in
the matrix inversion problem (see Sects. 4, 6.2).

The Laplace operator is discretized using Fourier repre-
sentation in longitude. The meridional part of Laplacian is
discretized with double application of compact formula for
the first derivative:

1
31 o) 13 G) 33 G
_ Yitip—vi-1p

4
Ao + O(A¢™). (34)

The longitudinal part of V? is the Fourier image of product
of two longitudinal derivatives defined by Eq. (31).

1 9%exp(ikr ~
XPUKY) _ P expliki) =

a’cos?p  OAZ
261sin(kAL) + sin(3kAL) — 36sin(2kAL)
192acospAX

2
) exp(ikr). (35)

Further details about compact finite-difference approxima-
tion of V? operator are in Sect. 6.2.

The main objective of using the analytically derived di-
vergence equation (22b) is time-symmetric discretization,
which theoretically leads to better inertia-gravity wave dis-
persion properties (Caluwaerts et al., 2015). Temporal sym-
metry means that the same discretization of V? is used in
implicit and explicit parts of the divergence equation. We do
not use CompFDs for approximation of the Laplace operator
to avoid matrix inversion in the explicit part of the equation.
The following approximation to V? is used:

1

vy i —
(Vi 12a%cos?@; A2
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(Iﬂi—z,j +16v;-1,; —30v; j +16Yi41,; — ¢i+2,j)+

1
a’(singji12 —singj_12) Ag

(%) COSQ; — (%) CoSQ;
g /i j+1/2 2=\ Jij- =2y

At the pole points, Eq. (36) is transformed to
1

(36)

(VY)Niat = — .
“ a?(1 — singnai—1/2) Ag
oy
(—) COS @Nlat—1/2, (37)
09/ Nlat—1/2

(Vi) =

1 v
— (5,)  cosein @9
as(singip — 1A\ 3¢ /; 1/

which preserves the formal order of accuracy and local con-
servation of the whole V2 discretization. (0Y¥/0¢)i,j+1/2 in
the above equations are evaluated using Eq. (31); the overbar
indicates the zonal average.

5.4 Nonlinear terms

The calculation of nonlinear terms can give rise to nonlinear
instability, when the interaction of the shortest scales leads
to the exaggerated contribution to the largest scales. We use
spatial averaging to suppress this kind of instability. The fol-
lowing formulae do not have a strict theoretical basis, but
they are rather a result of experience in optimizing model
performance.

The first type of nonlinear term is a scalar-by-scalar prod-
uct, namely ¢D, D? in vorticity and analytic divergence
equations (2) and (4):

D) j= % > [(Ei,j + §i+m,j) (Di,j + Dz‘+m,j)

m==+1
+ (Ci,/ + {i,j—i—m) (Di,j + Di,./+m)j|~ (39)

The term D? is computed in a similar way. Surprisingly, this
leads to better medium-range forecast scores as compared
to the formula with the increased weight of the central term
Gi,jDi,j-

Before computing nonlinear terms involving first-order
derivatives in A or ¢ (components of VlInpg, 97/dx,
aT,/0dx), these derivatives are averaged in the direction per-
pendicular to the direction of differentiation; e.g., 7y /9X is
averaged in latitude. The averaging formula is

(%), - 2—1|-c ((%);-14_6(%)/4_(%)/’“)’ (40)

where j is index in the direction perpendicular to x. The con-
stant ¢ = 3 for 7, and 7 derivatives, ¢ = 4 for V In p; compo-
nents. The horizontal wind components and temperature are
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averaged in 2-D for computation of J; Eq. (3), Jp Eq. (5) and
terms involving 7y in momentum (1) and thermodynamic (6)
equations:

_ 1
Ui j = E(Sui,j + Z (ui+m,j+m +Mi+m,j—m))a
m==1

— 1
I, = E(STvi,j + Z (Tvi+m,j + TVi,j+m))~ (41)

m==x1

Equations (39)—(41) are valid in the case of constant lat-
itudinal resolution. To account for the variable resolution,
we mention that [¢dg = [ Mdg’ and multiply all (¢; ; +
i, j+1)(Dj,j + Dj j+1)-type combinations in Eq. (39) and
Vi j+1 terms of Eqgs. (40) and (41) by 2M 112/ (M 12+
M;_1)2).

No averaging is applied for computations of terms involv-
ing the coefficients of hybrid coordinate system A, B, and
their derivatives. Also, no averaging is applied for compu-
tation of Rmoist/c) term in thermodynamic equation (6) and
hydrostatic equation (10) terms.

5.5 Vertical discretization

We use a Lorenz-staggered grid (Lorenz, 1960) in the verti-
cal where all variables, except vertical velocity 7, are located
at integer levels n; (cell centers) and 7 is located at half-
levels n;11/2 (cell interfaces). Integer grid levels are set to
n = (Mi+1/2 +mi—1/2)/2, 11,2 corresponds to the model top,
and nNiev+1/2 s at the Earth’s surface. Similarly to », the hy-
brid coordinate system coefficient A; = (A;y12+A1-1/2)/2,
and the same holds for B;, An; =n;4+1/2—n—1/2 and the
same is implied for AA;, AB; and other variables. The ver-
tical derivatives are approximated with a second order of ac-
curacy (%)l = i—‘,/;[’ + O0(An?).

It is almost standard for hydrostatic atmospheric mod-
els to use Simmons and Burridge (1981) vertical discretiza-
tion, where the geopotential is calculated at half-levels 7,4 1,2
by integrating the hydrostatic Eq. (10) with the mid-point
quadrature rule and then interpolated to the integer levels.
It was found that the trapezoidal rule allowing us to calculate
geopotential directly at the integer levels is more accurate.
Equation (10) is integrated in the following way:

p
ONley = Ds + RaTynjey In ——, (42)

PNlev

Rq 41
Q1 =P+ — (Tvl + Tvl—l) In —. (43)
2 Di—1

The vertical integrals in the time-discrete continuity equa-
tion (24) and also Eqgs. (25) and (26) are calculated using the
mid-point rule. At the end of each time step, the vertical ve-
locity is recalculated via the diagnostic relation derived from
the Eulerian form of the continuity equation (8):

_ o\ _ 9 (.
__V'(an) 871(87177)' @9
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0B dpy
an Jt

Integration of Eq. (44) from 11,2 to np41,2 using mid-point
rule and vertical boundary conditions gives

9ps =L
B —B —_— = A;poD; + BV - (psV
( L+1/2 1/2) o ; 1poD1+ BV - (psV);

ap .
Anp— Pl . (45)
UV RY)

The expression for % can be obtained by setting L = Nlev
in Eq. (45) and using nNiev41,2 = 0. After substituting this
expression back to Eq. (45) for arbitrary L, (0p/dn-1)L+1/2
can be evaluated. The term V- (psV) is calculated using
standard divergence discretization (see Sect. 5.2), second-
order averaging is applied to ps in latitude (longitude) be-
fore computing psu (psv). To retrieve the vertical velocity
n for calculation of upstream trajectories (see Sect. 3) and
terms of Eq. (2), (dp/dn-n) is interpolated to integer lev-
els with second-order accuracy and divided by (poAA; +
psAB;)/An; which is proxy for ap /9.

6 Elliptic problem solution
6.1 Wind velocity reconstruction

Following Tolstykh and Shashkin (2012), the definitions of
{=k-VxVand D=V-V are applied to reconstruct the
horizontal wind from the known vertical component of rela-
tive vorticity and horizontal divergence. Fourier representa-
tion in longitude Eq. (33) is used. The relations for the « and
v Oth Fourier components are

BAS cos ¢

_ A¢
b = Agacosg, (46)
JAY cos o
T20%% _ APacosg. (47)
d¢

These relations are integrated in latitude with the compact
formula (Lele, 1992):

1 (81//) +11(81//) n 1 (81//)
24\ 0/ j—1  12\0¢@/j 24\ 0@/ j+1

_ Yit12—Vj-12 +0(AGY, 48)
Agp

where Ag cos @ (Aé) cosg) is substituted for dyr/d¢ on the
left-hand side and A(’j cos g (Ag cos) is substituted for i
on the right-hand side. The resulting Fourier coefficients for
horizontal wind components at half-grid latitudes are inter-
polated to the integer grid latitudes using sixth-order com-
pact interpolation (Lele, 1992).
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The kth Fourier coefficients of horizontal wind compo-
nents are determined solving

A 3 B! cos N
—kA} — el S B,facosgo,
o9 (49)
v
A dA rCOSQ  ~p
By + 8— = A acosg,
¢
N dBY cos N
—kA] + 90k €059 = B,?acosga,
.9y (50)
dAY
- KCOSQ
kB — T = Ajacosg,

where dyr/d¢ is approximated using Numerov’s scheme:

61V

If A}f, l}Zf are Nlat + 1-element columns, with the jth el-

ement representing Aw, E}Igf at the jth grid latitude, and then
system (49) can be written as

A 1 -1 nu 219
—kA} — ——M"6CB; =aCB;,,
2A¢@
1 1 1 Av AD (52)
kB + KM 8CA} =aCAy,

where C is the diagonal matrix with C;; = cos¢;j, jth com-
ponent of column §A is A j+1— Aj j—1, M is matrix with di-
agonals (1/6,2/3,1/6). We multiply the system of Eqgs. (52)
by matrix M from the left and rewrite it for (A”, B“)T
pairs, j € [0, Nlat] that results in 2 x 2 block tri- dlagonal
system of equations. The same operations repeated for sys-
tem (50) yields 2 x 2 block tri-diagonal system of equations
for (A“, ég)jT The details of this solver are given in Tol-
stykh and Shashkin (2012). As shown in Caluwaerts et al.
(2015), this solver alleviates the problems associated with
non-symmetric discretization in time. Also, it avoids the so-
lution of Poisson problem on the sphere which requires cer-
tain care due to non-trivial kernel of Laplace operator.

6.2 Helmholtz problem solution

The discrete Helmholtz problem for 1 — the kth Fourier har-
monic of arbitrary quantity can be written in the column-
matrix notation of Sect. 6.1 as Ly 4+ u?y¥ = R, where L
is a discrete Laplace operator, uz is some scalar, R is kth
Fourier harmonic of RHS. When divergence equation (22a)
derived from time-discrete momentum equation (1) is used,
the meridional part of V2 operator is approximated by dou-
ble application of compact finite-difference formula for the
first derivative Eqs. (34) and (35) is used for the approxima-
tion of longitudinal part of Laplacian. The resulting 4th order
accurate Helmholtz problem discretization is

aizC_IM_lé‘l/z (Cl/zM?/125l/I) (,u - — zkz)lﬁ R, (53)
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where operator 81,7 acts on quantities defined at half-integer
grid points, the jth component of 61 2% is V12—V j-1/2,6
acts on quantities defined at integer grid points, the jth com-
ponent of 8¢ is ¥ ;11 — ¥, and M and M/, are tri-diagonal
matrices with diagonals (1/24,11/12, 1/24) acting on quan-
tities defined at integer and half-integer points, respectively.
Matrix C is the same as in Eq. (52), and matrix Cy; is diag-
onal with a jth diagonal element cos ;4 12.

Following Tolstykh (2002), Eq. (53) is multiplied by MC
from the left side and reformulated using auxiliary variable
=M, }8¢:

1
a—251/2 (Cl/zz) + M(CM2
M2z =46¥. (55)

C‘W):/; —MCR, (54)

Then Eq. (54) is rewritten for the pairs (Y;,z+1 /z)T, j=
[0, Nlat] that results in 2 x 2 block tri-diagonal system as in
Sect. 6.1.

Approximation Eq. (36) to the V2 operator is used when
the analytically derived divergence equation (22b) is em-
ployed in the system of Eqgs. (27) and (28). This approxi-
mation leads to a five-diagonal system of equations for ¥
components which is solved by five-diagonal Gaussian elim-
ination.

7 Dissipation mechanisms
7.1 Fourth-order hyper-diffusion

Nonlinear interactions in the complex large-scale atmo-
spheric flows result in generation of progressively smaller
eddies until these eddies are converted to heat by molecu-
lar viscosity at the scales on the order of 1cm. Such scales
are far beyond the affordable resolution of atmospheric mod-
els. Therefore, the parameterization of unresolved scale in-
teractions and dissipation is needed to avoid accumulation
of energy at smaller scales. Such parameterizations are often
considered the integral part of the atmospheric model dynam-
ical core (Williamson, 2007). The SL-AV20 model includes
the implicit in time fourth-order diffusion implemented in
Fourier space with the finite volume representation in lati-
tude (Tolstykh, 1997). This algorithm, allowing variable res-
olution in latitude, is a generalization of that one presented
in (Li and Bates, 1994). We start with the equation

¢n+l 1/jn+1 _ KAZV4W;_H (56)
where y"*1 is one of D!, i+ ¢+l pntl and w;ﬁ“
is the filtered quantity. Equation (56) uses implicit time-
stepping that allows us to circumvent severe limitation on
K near the grid poles, At is the same as in the rest of the
model dynamics. Also, as shown in Li and Bates (1994),
the V* diffusion with implicit time-stepping effectively
dumps the shortest zonal waves in the vicinity of poles that
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helps to avoid the instability associated with finite-difference
discretization of spherical differential operators containing
cos ¢ in denominator.

SL-AV20 uses variable-resolution grids, so the filter
should not excessively dissipate smaller-scale features in
high-resolution regions. However, these features should be
damped out before they spread to the low-resolution regions
where they cannot be resolved. We use an anisotropic dif-
fusion coefficient that varies with latitude; the V* is sub-
stituted for V - (KV31p) to preserve local conservation, K =
diag(Ky, Ky). To facilitate numerical solution, Eq. (56) is re-
formulated as

w?-i—l — Ipn+l — AtV KVS,

= vyt G

We use a second-order finite-volume formula to approximate
the latitudinal part of V - KV and V? operators:

1 Eiv1—&;
V-KVE& =—,(K 4 cos@iypt—21
( )(p Cle(Sln(p)j Pj+1/2 j+1/ A(Pj+l/2
K 5i78571) 4 o(ag? 58
- cpj_l/ZCOS(Pj—l/zm + 0(Agp7), (58)
-

where  @ji10=1/2(0j +¢j+1), A@jt172=@j+1 = ¢
A(sing)j =sing;1/2 —sing;_1,2. Longitudinal part of
V.KV and V? is approximated in Fourier space as the
Fourier image of second-order discretization.

The system Eqgs. (57) using (58) can be written for zonal
wavenumber k as

§ § §
A( vf?“),.l +( w;'f“),*c( w;’c“)H]

_ azA(sintp)j yrtl (59)
At 0 ;i
k2K AGsing) a?A(sing)
A _C_ cos2g; _~ At
a sing) “oosTe;
COSgﬂj_l/z
A= K“’j*l/2 Agj_1/2 ) 0
—_ O COSQj—1/2 ’
Apj—1/2
K. . COSQjt1/2 0
Pi+1/2 Ag;
C :( J+ /O Pj+1/2 cospian | (61)
Apjti)2
Jj+1/

where —k? = —(1 — coskAL)/AA? is the Fourier image of
longitudinal part of discrete Laplace operator. This system is
solved using 2 x 2 block tri-diagonal version of Gauss elim-
ination.

7.2 Sponge layer

The divergence damping at the vertical levels close to the
model top is used to avoid spurious reflection of vertically
propagating waves from the upper rigid lid () = 0 at the 012
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boundary condition). The term —9(n)D"*! is included in
the RHS of the discrete divergence equation (22). Implicit
time-stepping allows a wide admissible range of values for
damping coefficient ¢+ without complicating the solution of
system (27), (28).

8 Parallel implementation

The SL-AV20 model uses hybrid distributed-shared memory
parallelism based on a combination of MPI and OpenMP
technologies. Each MPI process performs computations in
the band of grid latitudes during the first phase of the time
step that includes upstream trajectory computations, interpo-
lation and combination of known terms into the RHS of an SI
system of equations (see Sect. 4). OpenMP threads are used
to parallelize longitude loops, thus dividing the latitude belt
into a number of parts.

The second phase of the SL-AV20 time step consists in
solving the SI system of equations, application of fourth-
order hyper-diffusion (Sect. 7) and reconstruction of wind
velocity from vorticity and divergence (Sect. 6.1). This phase
is mostly the solution of elliptic problems. To apply the direct
solvers described in Sects. 6 and 7, it is convenient to gather
kth Fourier coefficients from all grid latitudes in the mem-
ory of a specific MPI process. Therefore, the second phase
of the SL-AV20 time step is preceded by data transposition.
Each MPI process performs computations within the set of
longitude wavenumbers from pole to pole. OpenMP paral-
lelization of loops in the vertical is applied.

To balance the workload of MPI processes, the widths of
corresponding latitude bands are calculated accounting for
the grid reduction, so each process treats approximately the
same number of grid points. There is an additional constraint
of current implementation that all grid points for a given lat-
itude should be located at the same processor. There is no
load balance problem in Fourier-space computations, as the
processor partition is the same as for a regular grid. One can
additionally adjust load balance by taking into account that
some parameterizations only work in some latitude bands.

The data transpositions before and after the solution of
elliptical problems require global communications between
the processors. This will become a problem on future mas-
sively parallel computers and so the work has started to im-
plement scalable iterative grid-point solvers for elliptic prob-
lems into SL-AV model. It is known that iterative solvers for
problems described in Sects. 4, 6, 7 can scale up to tens of
thousands processors (Miiller and Scheichl, 2014). The semi-
Lagrangian advection code is also known to scale at 10* pro-
cessors (White III and Dongarra, 2011).

Currently, the full SL-AV20 code with parameterizations
runs at 3024 cores with 70 % efficiency, at 4536 cores with
63 % efficiency, and at 9072 cores with 45 % efficiency when
using the grid of 3024 by 1513 points in longitude and lat-
itude, respectively (see Fig. 1). This grid corresponds to
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Acceleration
IS
|
T

1 T (— T T
504 1296 22683024 4536 9072

No. of cores

Figure 1. Parallel acceleration of the SL-AV20 experimental con-
figuration on the grid of 3024 by 1513 points with respect to 504
cores (red line); linear acceleration — black line.

13 km resolution at the Equator and has 51 levels in the
vertical. The parallel efficiency is defined here as ey, =
100 %ap, SNﬁ, where N. is the number of computational
cores, and aclNC is the parallel acceleration at N, cores rela-
tive to the run at 504 cores (ay, is equal to the ratio of wall
times at 504 cores and N, cores). Only 288 cores are needed
to meet HMCR operational NWP requirements (20 min per
24 model hours) at the current operational horizontal grid of
1600 by 865 points.

The parallel efficiency of the current SL-AV20 implemen-
tation is limited by use of 1-D MPI decomposition and need
for global communications (transpositions). The global com-
munications due to data transpositions are also needed in
spectral hydrostatic semi-implicit semi-Lagrangian dynami-
cal cores. However, SL-AV20 can compute all the horizontal
derivatives in the grid-point space, while they are computed
in spectral space and so included in data transposition pro-
cedures in spectral models. So the number of variables that
undergo data transposition in SL-AV20 code is significantly
smaller.

9 Numerical experiments

Verification of atmospheric models’ dynamical cores with
idealized adiabatic (moist-adiabatic, quasi-adiabatic) test
cases such as Held and Suarez (1994), Jablonowski and
Williamson (2006b), Reed and Jablonowski (2012), and
Thatcher and Jablonowski (2016) has gained in popularity
in the last few years. The reason is that various aspects of
model numerics can be evaluated in an easier way using an
idealized setup than real atmospheric flow with all its com-
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Figure 2. Latitude grid spacing (solid lines) of 400 x 250
(red), 800 x 500 (green) and 1600 x 865 (blue) variable-resolution
latitude—longitude grids. Dotted lines indicate longitude grid spac-
ing of the corresponding reduced grids. Dashed lines show latitude
grid spacing in the constant-resolution grids with the same number
of latitudes.

plexity. Also, the numerical solutions to idealized tests are
independent of sub-grid-scale process parameterizations.

The complete verification of the SL-AV20 dynamical core
with all its options would require a separate article. Here we
concentrate on the impact of the horizontal grid aspects on
the numerical solution, namely, the grid reduction and reso-
lution refinement (see Sect. 5.1). The results presented below
are obtained with the baseline NWP setup of the SL-AV20
dynamical core with no inherent mass conservation and di-
vergence equation (22a) derived from the discrete form of
the momentum equation (1).

The grids with 400 x 250, 800 x 500, and 1600 x 865 points
in longitude and latitude, respectively, and 28 levels in the
vertical are used in this study. The first and last horizon-
tal grids correspond to the old and new SL-AV operational
NWP configurations at HMCR. The algorithm proposed by
Fadeev (2013) is used to obtain variable resolution and re-
duced variants of these grids. The latitude grid spacing is re-
fined in the Northern Hemisphere mid-latitudes. The reduced
grids used in this study have about 25 % less points than their
regular counterparts. Following our experience with shallow
water model (Tolstykh and Shashkin, 2012) and advection
(Shashkin et al., 2016) experiments, 25 % reduction is almost
the greatest reduction that does not significantly deteriorate
the solution accuracy. The characteristics of grids used in this
study are summarized in Fig. 2.

The time step for all variants of the 400 x 250 grid is 1200 s
and is reduced by the factor ¢ = % for finer grids (Nlon is
the number of grid points along the Equator). These time-step
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values are consistent with the SL-AV20 operational NWP
setup. The basic V# hyper-diffusion coefficients in 400 x 250
grid experiments are 1.5 x 109 m*s~! for relative vorticity
and temperature and 1.9 x 10" m*s~! for divergence; the
hyper-diffusion coefficients for finer grids are reduced by the
factor ¢3. The latitudinal component of the hyper-diffusion
coefficient (see Sect. 7) varies with latitudinal grid spacing
K, = (Ap/A¢')? Ko, where Ag’ = Z- and Ky is the basic
coefficient value for the given grid.

9.1 Baroclinic instability test case

In the baroclinic instability test case by Jablonowski and
Williamson (2006b), the small zonal wind perturbation of the
geostrophically balanced background state is placed in the
Northern Hemisphere mid-latitudes. After initial adjustment,
the perturbation causes exponential growth of the baroclinic
wave (days 1-7) until it breaks down (days 7—10) and trans-
forms to the fully chaotic solution in the course of another
20 days.

As can be seen from figures in Jablonowski and
Williamson (2006b) and Wan et al. (2013), the surface pres-
sure and temperature fields rapidly converge to the smooth
large-scale pattern with the resolution increase. Contrarily,
the relative vorticity field of the breaking wave consists of fil-
aments that become more and more twisted and thinner with
greater amplitude when the grid resolution is increased. Each
step of grid refinement reveals new smaller-scale features in
this field.

Our particular interest is the net effect of increasing lat-
itudinal and reducing longitudinal resolution in the zone of
interest, i.e., Northern Hemisphere mid-latitudes. Figure 3
presents the comparison of a day 9 850 hPa relative vortic-
ity field between numerical solutions on regular lat-lon grids
with constant grid spacing in latitude and reduced lat-lon
grids with variable latitudinal resolution. The absolute val-
ues of vorticity and its gradients are greater and the inner
structure of the vortices is more developed in the solutions
at 400 x 250 and 800 x 500 variable-resolution reduced grids
as compared to the solutions obtained at the corresponding
regular grids. The improvement in the 1600 x 865 grid so-
lution is less obvious, which can be partly attributed to the
convergence. Slightly stronger development of the leftmost
and middle vortices can be noticed in the variable-resolution
solution after closer consideration. However, some subtle de-
tails of the rightmost vortex are lost due to the grid reduction
(see discussion below).

To isolate the effect of the grid reduction, we compare the
day 9 850 hPa relative vorticity snapshots from the variable-
resolution grid solutions with and without reduction of lon-
gitudinal resolution (Fig. 4). Except for the leading vortex on
the 1600 x 865 grid, the difference between the solutions us-
ing the reduced and non-reduced grids can hardly be found.
Therefore, the reduction of longitudinal resolution does not
lead to the degradation of a solution. At the same time, one
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can hope that reproduction of mid-latitude pressure system
dynamics can be improved using variable resolution in lati-
tude. Nevertheless, it should be noted that the effect of lati-
tudinal resolution refinement is weaker than the effect of in-
creasing the resolution of the basic grid.

One can see in Figs. 3 and 4 that SL-AV20 solutions are
smooth and no evidence of grid-scale noise or any other type
of noise can be found. This does not compromise the repro-
duction of smaller-scale details, gradient strength and ampli-
tude of the relative vorticity field, which are in good agree-
ment with the solutions of comparable resolution: ICON
(Zangl et al., 2015), ECHAM (presented in Wan et al., 2013),
CAM-FV, CAM-EUL, CAM-SLD, and GME (compared in
Jablonowski and Williamson, 2006a). The surface pressure
error norms with respect to the CAM-SLD reference solution
(not shown) are below the uncertainty level (Jablonowski and
Williamson, 2006b), similar to the previous version of the
SL-AV model (Shashkin and Tolstykh, 2014).

The time-step values consistent with our operational NWP
practice lead to only modest advective CFL numbers of about
1 at day 9 and 2 at day 20 in this test case. So the model
stability is tested with larger time steps. There are no prob-
lems with stability of solution and no accuracy degradation
(in terms of comparison with the reference solution), with the
time step 2 times larger than the basic one. As the time step
is increased by a factor of 3, we face a small-scale noise in
the horizontal divergence field that contaminates the physi-
cal solution after day 9 of simulation. The issue can be cir-
cumvented by increasing the V* hyper-diffusion coefficient
10 times only for divergence. Increasing the diffusion coeffi-
cient for divergence does not significantly affect the accuracy
(in terms of the difference to the reference solution) and re-
production of smaller-scale relative vorticity features.

We believe that the stability challenge in this test is not
the advection, but the treatment of nonlinear terms of equa-
tions. Therefore, it is difficult to obtain a stable solution with
larger time steps even if a semi-implicit SL formulation is
used. Also, it should be noted that the semi-implicit SL ref-
erence solution from Jablonowski and Williamson (2006b) is
obtained using a time-step value even smaller than our basic
one (at a similar horizontal resolution).

9.2 Held-Suarez test

The goal of the Held and Suarez (1994) experiment is to ver-
ify statistical properties of the atmospheric model circulation
driven by highly idealized forcing — the relaxation of tem-
perature to the equilibrium profile and Rayleigh friction near
the surface. The resulting atmospheric regime is a balance
between non-uniform heating, polewards transport of heat
and momentum by baroclinic eddies and destruction of the
momentum in the boundary layer. Thus, the accurate repre-
sentation of baroclinic motions in the mid-latitudes plays a
crucial role for the test results.
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Figure 3. Day 9 relative vorticity at 850 hPa in the baroclinic instability test. Left column — SL-AV20 solutions using regular lat—lon grids
with constant latitude resolution: (a) 400 x 250, (¢) 800 x 500, (d) 1600 x 865. Right column: (b), (d), (e) — the same as the left column, but

using reduced lat—lon grids with variable resolution in latitude.
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Figure 4. The same as Fig. 3, but lat—lon grids with variable resolution in latitude (no reduction) in the left column.

Both lat-lon grid reduction and local increase in latitu-
dinal resolution can modify the intensity of eddy heat and
momentum fluxes and thus alter the net circulation charac-
teristics. Figure Sa—f presents the 1000-day time-zonal av-
eraged zonal wind speed, temperature, eddy heat and mo-
mentum fluxes, eddy kinetic energy and temperature vari-
ance. Shading shows the solution at a 400 x 250 reduced
grid with variable resolution in latitude; a regular grid so-
lution with constant latitudinal resolution is shown by con-
tours. One can note a slight increase of Northern Hemisphere
eddy momentum flux (near 300 hPa) and temperature vari-
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ance (near 900 hPa) maximum values. The eddy heat flux in
the Southern Hemisphere at 300 hPa is slightly degraded in
the variable-resolution solution that can be a co-effect of grid
reduction and increased latitudinal grid spacing. The color
levels of eddy kinetic energy to the north of 45° N in Fig. Se
are extended polewards as compared to the corresponding
contours of a regular grid solution. That means more inten-
sive eddy motions at high latitudes in the variable-resolution
reduced grid solution.

The standalone effect of grid reduction can be evaluated
from panels (g) to (1) in Fig. 5. The shading shows the dif-
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Figure 5. The 1000-day time-zonal averaged zonal wind speed (U), temperature (T'), momentum flux (U’ V"), heat flux (V'T"), eddy kinetic
energy and temperature variance in the Held—Suarez test. Panels (a)—(f) — shading shows a reduced grid solution with variable resolution in
latitude; contours show a regular grid solution with constant latitudinal resolution. Panels (g)—(I) — shading shows the difference between
regular and reduced grid solutions with constant resolution in latitude (regular minus reduced); overlaid contours depict the regular grid

solution.
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ference between constant latitudinal resolution regular and
reduced grid solutions (regular minus reduced); the contours
of regular grid solution are overlaid for reference. The ma-
jority of features depicted in these panels are explained by
the shift in jet-stream cores which is rather the result of in-
ternal low-frequency variability of test solutions (Wan et al.,
2008) than a consequence of grid reduction. We can find no
significant decrease in polewards eddy fluxes due to suppres-
sion of the shortest-scale motions in the regions with reduced
longitudinal resolution.

Figure 6 presents 500 hPa kinetic energy spectra from
three numerical solutions (regular, reduced, reduced with
variable resolution in latitude) in Northern Hemisphere mid-
latitudes (left panel) and high latitudes (right panel). To ob-
tain the corresponding spectra, # and v are multiplied by the
window function equal to 1 in a 30—60° N (to the north of
70° N in the case of a high-latitude spectrum) and 10° width
smooth transition to the zero value outside. The lines corre-
sponding to the regular and reduced grid solutions are almost
identical at mid-latitudes for all wavenumbers, whereas the
variable-resolution solution shows more intensive smaller-
scale motions. The effect of variable resolution at high lat-
itudes also outweighs the effect of grid reduction.

We also repeated a numerical experiment with the time
step of 2700 s (400 x 250 grid) that yields the maximum ad-
vective CFL of about 4 after day 200. The results are gener-
ally the same as for the basic time-step value of 1200 s.

9.3 Mountain-induced Rossby wave test case

The accuracy and stability of orography treatment in SL-
AV20 is tested with the mountain-induced Rossby wave case
(Sect. 1.5 of Jablonowski et al., 2008). In this test case, the
initially balanced zonally symmetric flow interferes with the
idealized mountain located at 30° N that results in generating
a Rossby wave train type solution.

It is well known that semi-implicit semi-Lagrangian mod-
els prone to resonantly amplifying the stationary gravity
wave feed back to the orography forcing when the advec-
tive CFL number is greater than 1 (the so-called spurious
orographic resonance). Figure 7 compares two SL-AV20 so-
lutions at a 1600 x 865 regular grid with constant latitudinal
resolution and At equal to 300 and 900 s that result in a max-
imum zonal CFL of about 0.66 and 2, respectively. The two
solutions in Fig. 7, however, look very similar and closely
agree with the reference solution from Jablonowski et al.
(2008) and the solution from the spectral non-hydrostatic dy-
namical core Simarro et al. (2013). The geopotential height
field is smooth in both SL-AV20 solutions. The Rossby wave
structure of wind component fields is slightly distorted by
small-scale noise downstream of the mountain, which we at-
tribute to the presence of physical inertia-gravity waves. The
u and v fields with Az = 900s look even less noisy than in the
At = 3005 solution. This can be explained by more intensive
gravity wave damping by the off-centered Crank—Nicolson
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scheme at At = 900s. The experiments using reduced grids
with constant and variable resolution in latitude lead to very
similar test results.

10 Conclusions

We have described the dynamical core of the SL-AV20
(semi-Lagrangian, based on the absolute vorticity equation)
atmospheric model, thus summarizing all recent develop-
ments in the model numerics (Fadeev, 2013; Tolstykh and
Shashkin, 2012; Shashkin and Tolstykh, 2014; Shashkin
et al., 2016). The model is applied to operational global nu-
merical weather prediction with 20 km resolution over Rus-
sia. Also, its lower-resolution configuration is expected to be
applied for probabilistic long-range forecasts and is the basis
for the development of the new atmospheric component of
the INMCM Earth system model (Volodin et al., 2017).

The main features of the model dynamical core are the
vorticity-divergence formulation at the unstaggered grid,
a reduced latitude—longitude grid with variable resolution
in latitude, using high-order finite-difference formulae, and
semi-Lagrangian semi-implicit discretization. The number of
grid points in longitude at near-polar latitudes for the reduced
grids constructed with the algorithm by Fadeev (2013) is an
order of magnitude smaller than the number of points at the
Equator.

The effects of the grid reduction and variable latitudinal
resolution on numerical solutions are investigated with two
idealized tests — the Jablonowski and Williamson (2006b)
deterministic case and the Held and Suarez (1994) long-run
experiment. The results agree with other published model so-
lutions. It is shown that the reduction in the number of grid
points by 25 % leads to only moderate damping of the short-
est longitudinal waves and does not degrade the solution.
At the same time, variable resolution in latitude allows us
to refine the grid in the region of interest and thus improve
the solution accuracy. Particularly, increasing latitudinal res-
olution in the Northern Hemisphere results in sharper gradi-
ents and stronger development in the relative vorticity field
during unstable baroclinic wave breaking in the Jablonowski
and Williamson (2006b) test and more intensive mid-latitude
eddy motions in the Held and Suarez (1994) test. In all tests,
the evident positive effect of increase in latitudinal resolution
outweighs the slight negative effect of grid reduction.

The stability and accuracy of SL-AV20 in the presence
of orography forcing is tested using the mountain-induced
Rossby wave test from Jablonowski et al. (2008). The solu-
tions at various grids using different time-step values (CFL
from 0.6 to 2) are very similar and are in good agreement
with the results from other models. We find no sign of res-
onant amplification of inertia-gravity wave response to the
orography.

We hope that the dynamical core presented in the article
will be used in numerical weather prediction setups with a
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horizontal resolution of about 9 km. Also, the ongoing appli-
cation of SL-AV20 is foreseen in seasonal forecasting and
climate simulations. Currently, the experimental SL-AV20
configuration with approximately 13 km horizontal resolu-
tion can efficiently use up to 9000 cores. This is sufficient
in a short-term perspective, but will become a bottleneck af-
ter some years once exascale computer architectures have
been implemented. Therefore, our plans for future develop-
ment are mainly concerned with improvement of parallel ef-
ficiency. We work on complete abandoning of Fourier-space
computations to reduce global communications (to date, we
have successfully tested computation of meridional deriva-
tives at the reduced grid in the grid-point space). Further-
more, we plan to implement 2-D domain decomposition
and scalable iterative grid-point solvers for elliptic problems
which are known to scale up to tens of thousands of proces-
sors (Miiller and Scheichl, 2014). Also, we test the SL-AV20
model with the Intel MIC architecture.

Geosci. Model Dev., 10, 1961-1983, 2017

Code availability. The SL-AV20 dynamical core is used in the op-
erational NWP model at the Hydrometcentre of Russia, and so
has certain limitations in distribution. Its code is available to inter-
ested readers for research and educational purposes; please contact
Mikhail Tolstykh (tolstykh@m.inm.ras.ru).

Data availability. The results of numerical experiments and com-
putational grid data are available in the Supplement to the article.
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Appendix A: List of notations
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mean Earth radius
coefficients of Simmons and Burridge (1981) hybrid vertical coordinate

kth zonal wavenumber coefficients of i Fourier representation in longitude
heat capacity of dry and moist air under constant pressure

horizontal divergence

the Coriolis parameter

source/sink of ¥ due to subgrid/diabatic processes

linear geopotential term

longitude and latitude grid-point indices

Jacobian-like terms of absolute vorticity and divergence equations (2, 4)
vertical unit vector

zonal wavenumber, the modified zonal wavenumber

vertical level index

inverse mapping factor d¢/d¢’

number of grid points in latitude, longitude and the vertical, respectively
pressure, constant reference pressure, surface pressure, respectively
reference pressure profile, reference surface pressure

orography-dependent reference surface pressure

specific concentrations of water vapor and liquid (solid) water species
vector pointing from the center of the sphere to the given point on its surface
gas constants of dry air, water vapor and moist air, respectively

RHS of time-discrete absolute vorticity (19), momentum, divergence (22b), thermodynamic
(23) and continuity (24) equations, respectively

the rotation matrix

analog of vertical velocity used in thermodynamic and continuity equations (8,6)
horizontal square of i, jth vertical column of computational cells
temperature, virtual temperature

constant reference temperature

horizontal wind

computational cell

Lagrangian volume

Ritchie and Tanguay (1996) correction term for thermodynamic equation (6)
grid spacing in longitude at jth grid latitude

vertical component of relative vorticity

hybrid vertical coordinate of Simmons and Burridge (1981)

vertical speed in 7 coordinate

longitude

latitude, jth grid latitude

pseudo-latitude

geopotential

surface geopotential

arbitrary quantity

Earth’s angular velocity

Y is evaluated at the departure point of upstream trajectory

average of ¥ over the V;j; cell or the §;;-horizontal square

1979
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Appendix B: Right-hand side of the SI system

The right-hand sides of the discrete in time equations formu-
lated in Sect. 4.1 are as follows:

Rg—é‘* +f*——|:(fD) (CD)(n+1)e (CD)n
+ J e +J;"+F§ni|, (B1)

with a departure-point Coriolis term f, = 2|Q|singy, @y is
the latitude of the departure point, (f D): = fi« D}, and D}
is divergence interpolated to the departure point.

At
Ry = —2@ x r"t! 4 7(evc;” - VG’]V) (B2)

At
HR[V” At 7(_ (1+€)VG" +evVGthe

— VGN<”+”e) + F"V] : (B3)
*
At At
Rp = 7(esz” +N;’,) + D"+ >
((f;)" — (14 6)V2G" +eV2GHDe f NUHDe 4 Fg) . (B4

*

_ 3
Np=—D">— RyV- ((Tv — T)Vlnps) - Za—f +Jp.  (B5)
ady

The right-hand side of the discretized in time thermody-
namic equation (23):
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ps(dB/0m) an
dy ()

+ymV- V‘DH—UW@ (B7)

the terms of N7 proportional to B(dB/dn)~! which arise
from substitution of dg /df In ps from continuity equation (8)
are set 0 when (0B/dn) = 0. Actually, (dB/dn) =0 only
when B =0 and thermodynamic equation (6) transforms
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to pure isobaric coordinate form that does not contain
dy/dtIn pg at all.
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Appendix C: SI system matrices

Following the column-matrix notation introduced at the end
of Sect. 4.1, we define T, S, and P as vectors with a /th
component representing Tv?‘H s1+1 and In pt! 2-D fields,
respectively, and write Eqs. (23), (25) and (26) as

- 1

T—KT(w1P+W2%AtS)=RT, 1
1+

(1—Bip)P = —CW*TAtD+CRP, (C2)

1+¢

~ 1 _
ALS = I[ _BP— cw%mD + CRP], (C3)

where ¥ = Rq/cpa, C is the matrix of mid-point rule in-
tegration from the model top to the ground, Ci; = An,
k,l € [1,Nlev], W" m € [1, 3] are diagonal matrices, Wll’l =

L 2 _ L 3 _ AA;po+AB;ps .
Aipo+Bips’ Wl,l — A;po+Bips’ Wl,l - PAm I is the

two-diagonal matrix interpolating §"*! to the integer ver-
tical levels, I; ; =1;;—1 = % Matrix B is diagonal, B;; =
(Bi+1/2 — B12). Matrix C equals to the lower triangle (in-
cluding main diagonal) of C and represents the operation
of mid-point rule integration from model top to some level
[+1/2.

The definition of G (Eq. 21) in the column-matrix form is

G=®,+AT + RqTP, (C4)

with the matrix of vertical integration using trapezoidal rule
A =U®. ® is a two-diagonal matrix which represents the
increment for the linear part of the geopotential between
the neighboring levels: ®Njey Niev = ln , P =® 41 =

; In p gl ,1 €[1,Nlev—1], Uis the upper trlangular matrix re-
sponsible for summation of the increments, Uy =1, [ > k,
and [/ € [1, Nlev].
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One can see that elimination of T', P, S from Eq. (Cfl) us-
ing Egs. (C1)—(C3) results in Eq. (27) with M =«RyT (1 —
Bi/2) 'A[W'C+W?I(C—BO)+RaT (1-B12) 'C, M =
M'W3,
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