283,298 research outputs found
Detector measures power in 50 to 30,000 GHz radiation band
Broadband power detector assembly measures electromagnetic radiation in the 50 to 30,000 GHz band. The assembly includes a matched pair of detectors which incorporate thin-film radiation absorbers. The detector is effective with either coherent or incoherent radiation
Isovector channel of quark-meson-coupling model and its effect on symmetry energy
The non-relativistic approximation of the quark-meson-coupling model has been
discussed and compared with the Skyrme-Hartree-Fock model which includes spin
exchanges. Calculations show that the spin-exchange interaction has important
effect on the descriptions of finite nuclei and nuclear matter through the Fock
exchange. Also in the quark-meson-coupling model, it is the Fock exchange that
leads to a nonlinear density-dependent isovector channel and changes the
density-dependent behavior of the symmetry energy.Comment: 20 pages, 9 figures and 1 table, accepted for publication in Nuclear
Physics
Split Two-Higgs-Doublet Model and Neutrino Condensation
We split the two-Higgs-doublet model by assuming very different vevs for the
two doublets: the vev is at weak scale (174 GeV) for the doublet \Phi_1 and at
neutrino-mass scale (10^{-2} \sim 10^{-3} eV) for the doublet \Phi_2. \Phi_1 is
responsible for giving masses to all fermions except neutrinos; while \Phi_2 is
responsible for giving neutrino masses through its tiny vev without introducing
see-saw mechanism. Among the predicted five physical scalars H, h, A^0 and
H^{\pm}, the CP-even scalar h is as light as 10^{-2} \sim 10^{-3}eV while
others are at weak scale. We identify h as the cosmic dark energy field and the
other CP-even scalar H as the Standard Model Higgs boson; while the CP-odd A^0
and the charged H^{\pm} are the exotic scalars to be discovered at future
colliders. Also we demonstrate a possible dynamical origin for the doublet
\Phi_2 from neutrino condensation caused by some unknown dynamics.Comment: version in Europhys. Lett. (discussions added
Shear-flow transition: the basin boundary
The structure of the basin of attraction of a stable equilibrium point is
investigated for a dynamical system (W97) often used to model transition to
turbulence in shear flows. The basin boundary contains not only an equilibrium
point Xlb but also a periodic orbit P, and it is the latter that mediates the
transition. Orbits starting near Xlb relaminarize. We offer evidence that this
is due to the extreme narrowness of the region complementary to basin of
attraction in that part of phase space near Xlb. This leads to a proposal for
interpreting the 'edge of chaos' in terms of more familiar invariant sets.Comment: 11 pages; submitted for publication in Nonlinearit
- …