1,592 research outputs found
Corrections to scaling in 2--dimensional polymer statistics
Writing for the mean
square end--to--end length of a self--avoiding polymer chain of
links, we have calculated for the two--dimensional {\em continuum}
case from a new {\em finite} perturbation method based on the ground state of
Edwards self consistent solution which predicts the (exact) exponent.
This calculation yields . A finite size scaling analysis of data
generated for the continuum using a biased sampling Monte Carlo algorithm
supports this value, as does a re--analysis of exact data for two--dimensional
lattices.Comment: 10 pages of RevTex, 5 Postscript figures. Accepted for publication in
Phys. Rev. B. Brief Reports. Also submitted to J. Phys.
Motion of Bound Domain Walls in a Spin Ladder
The elementary excitation spectrum of the spin-
antiferromagnetic (AFM) Heisenberg chain is described in terms of a pair of
freely propagating spinons. In the case of the Ising-like Heisenberg
Hamiltonian spinons can be interpreted as domain walls (DWs) separating
degenerate ground states. In dimension , the issue of spinons as
elementary excitations is still unsettled. In this paper, we study two
spin- AFM ladder models in which the individual chains are
described by the Ising-like Heisenberg Hamiltonian. The rung exchange
interactions are assumed to be pure Ising-type in one case and Ising-like
Heisenberg in the other. Using the low-energy effective Hamiltonian approach in
a perturbative formulation, we show that the spinons are coupled in bound
pairs. In the first model, the bound pairs are delocalized due to a four-spin
ring exchange term in the effective Hamiltonian. The appropriate dynamic
structure factor is calculated and the associated lineshape is found to be
almost symmetric in contrast to the 1d case. In the case of the second model,
the bound pair of spinons lowers its kinetic energy by propagating between
chains. The results obtained are consistent with recent theoretical studies and
experimental observations on ladder-like materials.Comment: 12 pages, 7 figure
Speckle from phase ordering systems
The statistical properties of coherent radiation scattered from
phase-ordering materials are studied in detail using large-scale computer
simulations and analytic arguments. Specifically, we consider a two-dimensional
model with a nonconserved, scalar order parameter (Model A), quenched through
an order-disorder transition into the two-phase regime. For such systems it is
well established that the standard scaling hypothesis applies, consequently the
average scattering intensity at wavevector _k and time t' is proportional to a
scaling function which depends only on a rescaled time, t ~ |_k|^2 t'. We find
that the simulated intensities are exponentially distributed, with the
time-dependent average well approximated using a scaling function due to Ohta,
Jasnow, and Kawasaki. Considering fluctuations around the average behavior, we
find that the covariance of the scattering intensity for a single wavevector at
two different times is proportional to a scaling function with natural
variables mt = |t_1 - t_2| and pt = (t_1 + t_2)/2. In the asymptotic large-pt
limit this scaling function depends only on z = mt / pt^(1/2). For small values
of z, the scaling function is quadratic, corresponding to highly persistent
behavior of the intensity fluctuations. We empirically establish a connection
between the intensity covariance and the two-time, two-point correlation
function of the order parameter. This connection allows sensitive testing,
either experimental or numerical, of existing theories for two-time
correlations in systems undergoing order-disorder phase transitions. Comparison
between theory and our numerical results requires no adjustable parameters.Comment: 18 pgs RevTeX, to appear in PR
Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density
Rationale:
In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI).
Objective:
To characterize RyR functional properties in relation to TT proximity, at baseline and after MI.
Methods:
Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F>F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category.
Results:
In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI.
Conclusion:
TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves
Decay of isolated surface features driven by the Gibbs-Thomson effect in analytic model and simulation
A theory based on the thermodynamic Gibbs-Thomson relation is presented which
provides the framework for understanding the time evolution of isolated
nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are
predicted, in which either diffusion or interface transfer is the limiting
process. These cases correspond to similar regimes considered in previous works
addressing the Ostwald ripening of ensembles of features. A third possible
limiting case is noted for the special geometry of "stacked" islands. In these
limiting cases, isolated features are predicted to decay in size with a power
law scaling in time: A is proportional to (t0-t)^n, where A is the area of the
feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The
constant of proportionality is related to parameters describing both the
kinetic and equilibrium properties of the surface. A continuous time Monte
Carlo simulation is used to test the application of this theory to generic
surfaces with atomic scale features. A new method is described to obtain
macroscopic kinetic parameters describing interfaces in such simulations.
Simulation and analytic theory are compared directly, using measurements of the
simulation to determine the constants of the analytic theory. Agreement between
the two is very good over a range of surface parameters, suggesting that the
analytic theory properly captures the necessary physics. It is anticipated that
the simulation will be useful in modeling complex surface geometries often seen
in experiments on physical surfaces, for which application of the analytic
model is not straightforward.Comment: RevTeX (with .bbl file), 25 pages, 7 figures from 9 Postscript files
embedded using epsf. Submitted to Phys. Rev. B A few minor changes made on
9/24/9
Pulsar Timing and its Application for Navigation and Gravitational Wave Detection
Pulsars are natural cosmic clocks. On long timescales they rival the
precision of terrestrial atomic clocks. Using a technique called pulsar timing,
the exact measurement of pulse arrival times allows a number of applications,
ranging from testing theories of gravity to detecting gravitational waves. Also
an external reference system suitable for autonomous space navigation can be
defined by pulsars, using them as natural navigation beacons, not unlike the
use of GPS satellites for navigation on Earth. By comparing pulse arrival times
measured on-board a spacecraft with predicted pulse arrivals at a reference
location (e.g. the solar system barycenter), the spacecraft position can be
determined autonomously and with high accuracy everywhere in the solar system
and beyond. We describe the unique properties of pulsars that suggest that such
a navigation system will certainly have its application in future astronautics.
We also describe the on-going experiments to use the clock-like nature of
pulsars to "construct" a galactic-sized gravitational wave detector for
low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the
current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks,
Springer Space Science Review
Characterization of complex networks: A survey of measurements
Each complex network (or class of networks) presents specific topological
features which characterize its connectivity and highly influence the dynamics
of processes executed on the network. The analysis, discrimination, and
synthesis of complex networks therefore rely on the use of measurements capable
of expressing the most relevant topological features. This article presents a
survey of such measurements. It includes general considerations about complex
network characterization, a brief review of the principal models, and the
presentation of the main existing measurements. Important related issues
covered in this work comprise the representation of the evolution of complex
networks in terms of trajectories in several measurement spaces, the analysis
of the correlations between some of the most traditional measurements,
perturbation analysis, as well as the use of multivariate statistics for
feature selection and network classification. Depending on the network and the
analysis task one has in mind, a specific set of features may be chosen. It is
hoped that the present survey will help the proper application and
interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of
measurements for inclusion are welcomed by the author
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
Optimality of mutation and selection in germinal centers
The population dynamics theory of B cells in a typical germinal center could
play an important role in revealing how affinity maturation is achieved.
However, the existing models encountered some conflicts with experiments. To
resolve these conflicts, we present a coarse-grained model to calculate the B
cell population development in affinity maturation, which allows a
comprehensive analysis of its parameter space to look for optimal values of
mutation rate, selection strength, and initial antibody-antigen binding level
that maximize the affinity improvement. With these optimized parameters, the
model is compatible with the experimental observations such as the ~100-fold
affinity improvements, the number of mutations, the hypermutation rate, and the
"all or none" phenomenon. Moreover, we study the reasons behind the optimal
parameters. The optimal mutation rate, in agreement with the hypermutation rate
in vivo, results from a tradeoff between accumulating enough beneficial
mutations and avoiding too many deleterious or lethal mutations. The optimal
selection strength evolves as a balance between the need for affinity
improvement and the requirement to pass the population bottleneck. These
findings point to the conclusion that germinal centers have been optimized by
evolution to generate strong affinity antibodies effectively and rapidly. In
addition, we study the enhancement of affinity improvement due to B cell
migration between germinal centers. These results could enhance our
understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio
Recurrence quantification analysis as a tool for the characterization of molecular dynamics simulations
A molecular dynamics simulation of a Lennard-Jones fluid, and a trajectory of
the B1 immunoglobulin G-binding domain of streptococcal protein G (B1-IgG)
simulated in water are analyzed by recurrence quantification, which is
noteworthy for its independence from stationarity constraints, as well as its
ability to detect transients, and both linear and nonlinear state changes. The
results demonstrate the sensitivity of the technique for the discrimination of
phase sensitive dynamics. Physical interpretation of the recurrence measures is
also discussed.Comment: 7 pages, 8 figures, revtex; revised for review for Phys. Rev. E
(clarifications and expansion of discussion)-- addition of the 8 postscript
figures previously omitted, but unchanged from version
- …