2,801 research outputs found

    Generalization of the Schott energy in electrodynamic radiation theory

    Get PDF
    We discuss the origin of the Schott energy in the Abraham-Lorentz version of electrodynamic radiation theory and how it can be used to explain some apparent paradoxes. We also derive the generalization of this quantity for the Ford-O'Connell equation, which has the merit of being derived exactly from a microscopic Hamiltonian for an electron with structure and has been shown to be free of the problems associated with the Abraham-Lorentz theory. We emphasize that the instantaneous power supplied by the applied force not only gives rise to radiation (acceleration fields), but it can change the kinetic energy of the electron and change the Schott energy of the velocity fields. The important role played by boundary conditions is noted

    A quantum violation of the second law?

    Get PDF
    An apparent violation of the second law of thermodynamics occurs when an atom coupled to a zero-temperature bath, being necessarily in an excited state, is used to extract work from the bath. Here the fallacy is that it takes work to couple the atom to the bath and this work must exceed that obtained from the atom. For the example of an oscillator coupled to a bath described by the single relaxation time model, the mean oscillator energy and the minimum work required to couple the oscillator to the bath are both calculated explicitly and in closed form. It is shown that the minimum work always exceeds the mean oscillator energy, so there is no violation of the second law

    Consistency of a Causal Theory of Radiative Reaction with the Optical Theorem

    Get PDF
    The Abraham-Lorentz-Dirac equation for a point electron, while suffering from runaway solutions and an acausal response to external forces, is compatible with the optical theorem. We show that a theory of radiative reaction that allows for a finite charge distribution is not only causal and free of runaway solutions, but is also consistent with the optical theorem and the standard formula for the Rayleigh scattering cross section.Comment: 4 pages, 2 figure

    Does the Third Law of Thermodynamics hold in the Quantum Regime?

    Get PDF
    The first in a long series of papers by John T. Lewis, G. W. Ford and the present author, considered the problem of the most general coupling of a quantum particle to a linear passive heat bath, in the course of which they derived an exact formula for the free energy of an oscillator coupled to a heat bath in thermal equilibrium at temperature T. This formula, and its later extension to three dimensions to incorporate a magnetic field, has proved to be invaluable in analyzing problems in quantum thermodynamics. Here, we address the question raised in our title viz. Nernst's third law of thermodynamics

    Signatures of the Youngest Starbursts: Optically-thick Thermal Bremsstrahlung Radio Sources in Henize 2-10

    Full text link
    VLA radio continuum imaging reveals compact (<8 pc) ~1 mJy radio sources in the central 5" starburst region of the blue compact galaxy Henize 2-10. We interpret these radio knots as extremely young, ultra-dense HII regions. We model their luminosities and spectral energy distributions, finding that they are consistent with unusually dense HII regions having electron densities, 1500 cm^-3 < n_e < 5000 cm^-3, and sizes of 3-8 pc. Since these H II regions are not visible in optical images, we propose that the radio data preferentially reveal the youngest, densest, and most highly obscured starforming events. Energy considerations imply that each of the five \HII regions contains ~750 O7V equivalent stars, greater than the number found in 30 Doradus in the LMC. The high densities imply an over-pressure compared to the typical interstellar medium so that such objects must be short-lived (<0.5 Myr expansion timescales). We conclude that the radio continuum maps reveal the very young (<0.5 Myr) precursors of ``super starclusters'' or ``proto globular clusters'' which are prominent at optical and UV wavelengths in He 2-10. If the ultra-dense HII regions are typical of those which we predict will be found in other starbursting systems, then super starclusters spend 15% of their lifetime in heavily-obscured environments, similar to Galactic ultra-compact HII regions. This body of work leads us to propose that massive extragalactic star clusters (i.e. proto globular clusters) with ages <10^6 yr may be most easily identified by finding compact radio sources with optically-thick thermal bremsstrahlung spectral signatures.Comment: AASTeX, 8 figures 2 included with psfig in text; other 6 in jpeg format; Postscript versions of figures may be found at http://zem.ucolick.org/chip/Research/young_clusters.html -- Accepted for publication in the Astrophysical Journa

    Anomalous diffusion in quantum Brownian motion with colored noise

    Get PDF
    Anomalous diffusion is discussed in the context of quantum Brownian motion with colored noise. It is shown that earlier results follow simply and directly from the fluctuation-dissipation theorem. The limits on the long-time dependence of anomalous diffusion are shown to be a consequence of the second law of thermodynamics. The special case of an electron interacting with the radiation field is discussed in detail. We apply our results to wave-packet spreading

    Quantum collapse in ground-state Fermi-Dirac-Landau plasmas

    Full text link
    It is revealed that in a relativistically degenerate dense highly-magnetized electron-ion plasma the effective quantum-potential due to the total quantum-force acting on fermions may cancel-out causing a quantum transverse collapse in the ground-state Fermi-Dirac-Landau (GSFDL) plasma. The condition for the plasma transverse collapse is found to be restricted to the minimum relativistic degeneracy parameter and minimum impressed magnetic field strength values satisfied for many superdense astrophysical objects such as white dwarfs and neutron stars. In such plasmas, the magnetization pressure is shown to cancel the lateral electron degeneracy pressure counteracting the existing gravitational pressure. Furthermore, using the Sagdeev pseudopotential method in the framework of quantum magnetohydrodynamics (QMHD) model including spin magnetization it is confirmed that the quantum pressure due to spin-orbit polarization and the electron relativistic degeneracy has significant effects on the existence criteria and the propagation of localized magnetosonic density excitations in GSFDL plasmas. Current findings can have important implications for the density excitations mechanism and gravitational collapse of the highly magnetized astrophysical relativistically dense objects such as white-dwarfs, neutron stars, magnetars and pulsars.Comment: To be Published in Journal Physics of Plasma

    Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas

    Full text link
    In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of nonrelativistic and relativistic degeneracies exist. Furthermore, it is remarked that first-order corrections due to such interactions (which are proportional to the fine-structure constant) are significant on soliton dynamics in nonrelativistic plasma degeneracy regime rather than relativistic one. In the relativistic degeneracy regime, however, these effects become less important and the electron quantum-tunneling and Pauli-exclusion dominate the nonlinear wave dynamics. Hence, application of non-interacting Fermi-Dirac QHD model to study the nonlinear wave dynamics in quantum plasmas such as compact stars is most appropriate for the relativistic degeneracy regime
    • …
    corecore