1,201 research outputs found

    Triangulating evidence on the role of perceived versus objective experiences of childhood adversity in psychopathology

    Get PDF
    Childhood adversities, such as maltreatment, bullying, and socioeconomic deprivation, are well-established risk factors for psychopathology. Recent evidence suggests that it is the perceived, rather than objective (i.e., actual) experience of childhood adversity which is associated with psychopathology (Danese & Widom, 2020). However, it is unclear whether perceptions of childhood adversity cause psychopathology, as this cannot be tested ethically or feasibly with randomised controlled trials. Triangulation can instead be used to improve causal inference in observational research, by integrating evidence across multiple approaches with different sources of bias

    Precision of a pointing movement performed with either the dominant or non-dominant hand is linked to the timing of anticipatory postural adjustments

    Get PDF
    Introduction: It is a common experience to feel motor awkwardness when performing a pointing movement with the non-preferred limb, which is known to be associated to less precise movements. Here we provide evidence that this last behaviour partly stems from changes in the temporal organization of the Anticipatory Postural Adjustments (APAs) in the non-preferred side. Materials and methods: We investigated the effect of lateralization on APAs in Biceps Brachii, Triceps Brachii and Anterior Deltoid, which stabilize the arm when performing a pen-pointing movement (prime mover Flexor Carpi Radialis). Moreover, we analysed the elbow and wrist kinematics as well as the precision of the pointing movement. Results: The mean kinematics of wrist movement and its latency, with respect to prime mover recruitment, were similar in the two sides, while APAs in Triceps Brachii, Biceps Brachii and Anterior Deltoid were less anticipated when movements were performed with the non-dominant (20\u201330 ms) versus dominant hand (60\u201370 ms). APAs in the non-dominant limb were associated with an altered fixation of the elbow, which showed a higher excursion, and with a more scattered pointing error (non-dominant: 16.3 \ub1 1.7 mm versus dominant: 10.1 \ub1 0.8 mm). Discussion: By securing the dynamics of the more proximal joints, an appropriate timing of the intra-limb APAs seems necessary for refining the voluntary movement precision. The linkage between APAs, elbow fixation and movement accuracy also agrees with the recent suggestion that APAs and prime mover recruitment are driven by a shared motor command, which strives to obtain an accurate pointing

    Intended rather than actual movement velocity determines the latency of anticipatory postural adjustments

    Get PDF
    The literature reports that anticipatory postural adjustments (APAs) are programmed according to movement velocity. However, the linkage between APAs and velocity has been highlighted within single subjects who were asked to voluntarily change movement velocity; therefore, till now, it has been impossible to discern whether the key factor determining APA latency was the intended movement velocity or the actual one. Aim of this study was to distinguish between these two factors. We analyzed the APA chain that stabilizes the arm during a brisk index finger flexion in two groups of subjects: (1) 29 who composed our database from previous experiments and were asked to "go-as-fast-as-possible" (go-fast), but actually performed the movement with different speeds (238-1180\ub0/s), and (2) ten new subjects who performed the go-fast movement at more than 500\ub0/s and were then asked to go-slow at about 50 % of their initial velocity, thus moving at 300-800\ub0/s. No correlation between APA latency and actual movement speed was observed when all subjects had to go-fast (p > 0.50), while delayed APAs were found in the ten new subjects when they had to go-slow (p < 0.001). Moreover, in the speed range between 300 and 800\ub0/s, the APA latency depended only on movement instruction: subjects going fast showed earlier APAs than those going slow (p < 0.001). These data suggest a stronger role of the intended movement velocity versus the actual one in modifying the timing of postural muscles recruitment with respect to the prime mover. These results also strengthen the idea of a shared postural and voluntary command within the same motor act

    Interactions Between Baclofen and DC-induced Plasticity of Afferent Fibers within the Spinal Cord

    Get PDF
    The aims of the study were to compare effects of baclofen, a GABA B receptor agonist commonly used as an antispastic drug, on direct current (DC) evoked long-lasting changes in the excitability of afferent fibers traversing the dorsal columns and their terminal branches in the spinal cord, and to examine whether baclofen interferes with the development and expression of these changes. The experiments were performed on deeply anesthetized rats by analyzing the effects of DC before, during and following baclofen administration. Muscle and skin afferent fibers within the dorsal columns were stimulated epidurally and changes in their excitability were investigated following epidural polarization by 1.0\u20131.1 \u3bcA subsequent to i.v. administration of baclofen. Epidural polarization increased the excitability of these fibers during post-polarization periods of at least 1 h. The facilitation was as potent as in preparations that were not pretreated with baclofen, indicating that the advantages of combining epidural polarization with epidural stimulation would not be endangered by pharmacological antispastic treatment with baclofen. In contrast, baclofen-reduced effects of intraspinal stimulation combined with intraspinal polarization (0.3 \u3bcA) of terminal axonal branches of the afferents within the dorsal horn or in motor nuclei, whether administered ionophoretically or intravenously. Effects of DC on monosynaptically evoked synaptic actions of these fibers (extracellular field potentials) were likewise reduced by baclofen. The study thus provides further evidence for differential effects of DC on afferent fibers in the dorsal columns and the preterminal branches of these fibers and their involvement in spinal plasticity

    Anticipatory Postural Adjustments associated with reaching movements are programmed according to the availability of visual information

    Get PDF
    During goal-directed arm movements, the eyes, head, and arm are coordinated to look at and reach the target. We examined whether the expectancy of visual information about the target modifies Anticipatory Postural Adjustments (APAs). Ten standing subjects had to (1) move the eyes, head and arm, so as to reach, with both gaze and index-finger, a target of known position placed outside their visual field (Gaze-Reach); (2) look at the target while reaching it (Reach in Full Vision); (3) keep the gaze away until having touched it (Reach then Gaze) and (4) just Gaze without Reach the target. We recorded eye, head, right arm, and acromion kinematics, EMGs from upper- and lower-limb muscles, and forces exerted on the ground. In Gaze-Reach, two coordination strategies were found: when gaze preceded arm muscle recruitment (Gaze-first) and when the opposite occurred (Reach-first). APAs in acromion kinematics, leg muscles, and ground forces started significantly earlier in Gaze-first vs. Reach-first (mean time advance: 44.3 \ub1 8.9 ms), as it was in Reach in Full Vision vs. Reach then Gaze (39.5 \ub1 7.9 ms). The Gaze-first to Reach-first time-shift was similar to that between Reach in Full Vision and Reach then Gaze (p = 0.58). Moreover, Gaze without Reach data witnessed that the head-induced postural actions did not affect the APA onset in Gaze-first and Reach-first. In conclusion, in Gaze-first, the central control of posture considers visual information while planning the movement, like in Reach in Full Vision; while Reach-first is more similar to Reach then Gaze, where vision is not required

    Transcranial direct current stimulation of SMA modulates anticipatory postural adjustments without affecting the primary movement

    Get PDF
    Recent works provide evidences that anticipatory postural adjustments (APAs) are programmed with the prime mover recruitment as a shared posturo-focal command. However the ability of the CNS to adjust APAs to changes in the postural context implies that the postural and voluntary components should take different pathways before reaching the representation of single muscles in the primary motor cortex. Here we test if such bifurcation takes place at the level of the supplementary motor area (SMA). TDCS was applied over the SMA in 14 subjects, who produced a brisk index-finger flexion. This activity is preceded by inhibitory APAs, carved in the tonic activity of Biceps Brachii and Anterior Deltoid, and by an excitatory APA in Triceps Brachii. Subjects performed a series of 30 flexions before, during and after 20min of tDCS in CATHODAL, ANODAL or SHAM configuration. The inhibitory APA in Biceps and the excitatory APA in Triceps were both greater in ANODAL than in SHAM and CATHODAL configurations, while no difference was found among the latter two (ANODAL vs. SHAM: biceps +26.5%, triceps +66%; ANODAL vs. CATHODAL: biceps +20.5%, triceps: +63.4%; for both muscles, ANOVA p<0.02, Tukey p<0.05). Instead, the APA in anterior deltoid was unchanged in all configurations. No changes were observed in prime mover recruitment and index-finger kinematics. Results show that the SMA is involved in modulating APAs amplitude. Moreover, the differential effect of tDCS observed on postural and voluntary commands suggests that these two components of the motor program are already separated before entering SMA

    Finding critical points using improved scaling Ansaetze

    Full text link
    Analyzing in detail the first corrections to the scaling hypothesis, we develop accelerated methods for the determination of critical points from finite size data. The output of these procedures are sequences of pseudo-critical points which rapidly converge towards the true critical points. In fact more rapidly than previously existing methods like the Phenomenological Renormalization Group approach. Our methods are valid in any spatial dimensionality and both for quantum or classical statistical systems. Having at disposal fast converging sequences, allows to draw conclusions on the basis of shorter system sizes, and can be extremely important in particularly hard cases like two-dimensional quantum systems with frustrations or when the sign problem occurs. We test the effectiveness of our methods both analytically on the basis of the one-dimensional XY model, and numerically at phase transitions occurring in non integrable spin models. In particular, we show how a new Homogeneity Condition Method is able to locate the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state quantities on relatively small systems.Comment: 16 pages, 4 figures. New version including more general Ansaetze basically applicable to all case

    Escape orbits and Ergodicity in Infinite Step Billiards

    Full text link
    In a previous paper we defined a class of non-compact polygonal billiards, the infinite step billiards: to a given decreasing sequence of non-negative numbers {pn\{p_{n}, there corresponds a table \Bi := \bigcup_{n\in\N} [n,n+1] \times [0,p_{n}]. In this article, first we generalize the main result of the previous paper to a wider class of examples. That is, a.s. there is a unique escape orbit which belongs to the alpha and omega-limit of every other trajectory. Then, following a recent work of Troubetzkoy, we prove that generically these systems are ergodic for almost all initial velocities, and the entropy with respect to a wide class of ergodic measures is zero.Comment: 27 pages, 8 figure

    QUANTIZATION OF A CLASS OF PIECEWISE AFFINE TRANSFORMATIONS ON THE TORUS

    Full text link
    We present a unified framework for the quantization of a family of discrete dynamical systems of varying degrees of "chaoticity". The systems to be quantized are piecewise affine maps on the two-torus, viewed as phase space, and include the automorphisms, translations and skew translations. We then treat some discontinuous transformations such as the Baker map and the sawtooth-like maps. Our approach extends some ideas from geometric quantization and it is both conceptually and calculationally simple.Comment: no. 28 pages in AMSTE
    • …
    corecore