681 research outputs found

    Hubbard model versus t-J model: The one-particle spectrum

    Get PDF
    The origin of the apparent discrepancies between the one-particle spectra of the Hubbard and t-J models is revealed: Wavefunction corrections, in addition to the three-site terms, should supplement the bare t-J. In this way a quantitative agreement between the two models is obtained, even for the intermediate-UU values appropriate for the high-Tc cuprate superconductors. Numerical results for clusters of up to 20 sites are presented. The momentum dependence of the observed intensities in the photoemission spectra of Sr2CuO2Cl2 are well described by this complete strong-coupling approach.Comment: 4 two-column RevTeX pages, including 4 Postscript figures. Uses epsf. Accepted for publication in Physical Review B, Rapid Communicatio

    Dynamical density-density correlations in one-dimensional Mott insulators

    Full text link
    The dynamical density-density correlation function is calculated for the one-dimensional, half-filled Hubbard model extended with nearest neighbor repulsion using the Lanczos algorithm for finite size systems and analytically for large on site repulsion compared to hopping amplitudes. At the zone boundary an excitonic feature exists for any finite nearest neighbor repulsion and exhausts most of the spectral weight, even for parameters where no exciton is visible at zero momentum.Comment: 5 pages, REVTeX, epsf, 3 postscript figure

    Pairing Correlations on t-U-J Ladders

    Full text link
    Pairing correlations on generalized t-U-J two-leg ladders are reported. We find that the pairing correlations on the usual t-U Hubbard ladder are significantly enhanced by the addition of a nearest-neighbor exchange interaction J. Likewise, these correlations are also enhanced for the t-J model when the onsite Coulomb interaction is reduced from infinity. Moreover, the pairing correlations are larger on a t-U-J ladder than on a t-Jeff ladder in which Jeff has been adjusted so that the two models have the same spin gap at half-filling. This enhancement of the pairing correlations is associated with an increase in the pair-binding energy and the pair mobility in the t-U-J model and point to the importance of the charge transfer nature of the cuprate systems

    Spectral function of the 1D Hubbard model in the U→+∞U\to +\infty limit

    Full text link
    We show that the one-particle spectral functions of the one-dimensional Hubbard model diverge at the Fermi energy like ∣ω−εF∣−3/8|\omega-\varepsilon_F|^{-3/8} in the U→+∞U\to +\infty limit. The Luttinger liquid behaviour ∣ω−εF∣α|\omega-\varepsilon_F|^\alpha, where α→1/8\alpha \to 1/8 as U→+∞U\to +\infty , should be limited to ∣ω−εF∣∼t2/U|\omega-\varepsilon_F| \sim t^2/U (for UU large but finite), which shrinks to a single point, ω=εF\omega=\varepsilon_F,in that limit. The consequences for the observation of the Luttinger liquid behaviour in photoemission and inverse photoemission experiments are discussed.Comment: 4 pages, RevTeX, 2 figures on reques

    Excitons in Mott insulators

    Full text link
    Motivated by recent Raman and resonant inelastic X-ray scattering experiments performed for Mott insulators, which suggest formation of excitons in these systems, we present a theory of exciton formation in the upper Hubbard band. The analysis based on the spin polaron approach is performed in the framework of an effective t-J model for the subspace of states with one doubly occupied site. Our results confirm the existence of excitons and bear qualitative resemblance to experimental data despite some simplifications in our approach. They prove that the basic underlying mechanismof exciton formation is the same as that which gives rise to binding of holes in weakly doped antiferromagnets.Comment: 4 pages, 1 figur

    Phonon Assisted Multimagnon Optical Absorption and Long Lived Two-Magnon States in Undoped Lamellar Copper Oxides

    Full text link
    We calculate the effective charge for multimagnon infrared (IR) absorption assisted by phonons in the parent insulating compounds of cuprate superconductors and the spectra for two-magnon absorption using interacting spin-wave theory. Recent measured bands in the mid IR [Perkins et al. Phys. Rev. Lett. {\bf 71} 1621 (1993)] are interpreted as involving one phonon plus a two-magnon virtual bound state, and one phonon plus higher multimagnon absorption processes. The virtual bound state consists of a narrow resonance occurring when the magnon pair has total momentum close to (Ï€,0)(\pi,0).Comment: 4 page

    Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions

    Get PDF
    This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which includes all the 3d states of the Cu ions and the 2p states of the O ions. We also include spin-orbit interactions, hopping between ground and excited crystal field states of the Cu ions, and rather general Coulomb interactions. Our analytic results for the spin Hamiltonian, H, are corroborated by numerical evaluations of the energy splitting of the ground manifold for two holes on either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case and for the model considered, we prove that H is rotationally invariant in the absence of Coulomb exchange. When Coulomb exchange is present, each bond Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For lower symmetry situations, the single bond spin Hamiltonian is anisotropic at order t**6 for constant U and at order t**2 for nonconstant U. (Constant U means that the Coulomb interaction between orbitals does not depend on which orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989

    The dimerized phase of ionic Hubbard models

    Full text link
    We derive an effective Hamiltonian for the ionic Hubbard model at half filling, extended to include nearest-neighbor repulsion. Using a spin-particle transformation, the effective model is mapped onto simple spin-1 models in two particular cases. Using another spin-particle transformation, a slightly modified model is mapped into an SU(3) antiferromagnetic Heisenberg model whose exact ground state is known to be spontaneously dimerized. From the effective models several properties of the dimerized phase are discussed, like ferroelectricity and fractional charge excitations. Using bosonization and recent developments in the theory of macroscopic polarization, we show that the polarization is proportional to the charge of the elementary excitations
    • …
    corecore