1,423 research outputs found

    Generating Erler-Schnabl-type Solution for Tachyon Vacuum in Cubic Superstring Field Theory

    Full text link
    We study a new set of identity-based solutions to analyze the problem of tachyon condensation in open bosonic string field theory and cubic superstring field theory. Even though these identity-based solutions seem to be trivial, it turns out that after performing a suitable gauge transformation, we are left with the known Erler-Schnabl-type solutions which correctly reproduce the value of the D-brane tension. This result shows explicitly that how a seemingly trivial solution can generate a non-trivial configuration which precisely represents to the tachyon vacuum.Comment: 22 pages, references added, appendix added, 2 subsections adde

    On Gauge Equivalence of Tachyon Solutions in Cubic Neveu-Schwarz String Field Theory

    Full text link
    Simple analytic solution to cubic Neveu-Schwarz String Field Theory including the GSO(−)GSO(-) sector is presented. This solution is an analog of the Erler-Schnabl solution for bosonic case and one of the authors solution for the pure GSO(+)GSO(+) case. Gauge transformations of the new solution to others known solutions for the NSNS string tachyon condensation are constructed explicitly. This gauge equivalence manifestly supports the early observed fact that these solutions have the same value of the action density.Comment: 8 pages, LaTe

    Triviality and the Precision Bound on the Higgs Mass

    Get PDF
    The triviality of the scalar sector of the standard one-doublet Higgs model implies that this model is only an effective low-energy theory valid below some cut-off scale Lambda. For a heavy higgs this scale must be relatively low (10 TeV or less). Additional interactions coming from the underlying theory, and suppressed by the scale Lambda, give rise to model-dependent corrections to precisely measured electroweak quantities. Dimension six operators arising from the underlying physics naturally contribute to the S and T parameters, and their effects should be included in a global fit to the precision data that determines any limit on the Higgs mass. Using dimensional analysis, we estimate the expected size of these corrections in a custodially-symmetric strongly-interacting underlying theory. Taking these operators' coefficients to be of natural size gives sufficiently large contributions to the T parameter to reconcile Higgs masses as large as 400-500 GeV with the precision data.Comment: 9 pages, 3 epsf figures include

    Gastric Cancer in the Setting of Persistently Elevated Human Chorionic Gonadotropin: A Case Report

    Get PDF
    A 35-year-old woman presented to the emergency room for the evaluation of failed surgical and medical management of a suspected ectopic pregnancy. When imaging studies were performed, she had lymphadenopathy and diffuse sclerosis of the osseous framework. Multiple biopsies were performed and revealed poorly differentiated metastatic carcinoma with signet ring features. Esophagogastroduodenoscopy confirmed the findings of a Stage IV gastric adenocarcinoma. Signs and symptoms of gastric carcinoma are vague. However, to our knowledge, an elevation in human chorionic gonadotropin (hCG) is not an associated finding. Persistence of hCG has many causes from abnormal pregnancy to menopause and other forms of cancer

    The Fourth SM Family Neutrino at Future Linear Colliders

    Full text link
    It is known that Flavor Democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three family fermions Flavor Democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton CKM matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac (Îœ4)(\nu_{4}) and Majorana (N1)(N_{1}) neutrinos at future linear colliders with s=500\sqrt{s}=500 GeV, 1 TeV and 3 TeV are considered. The cross section for the process e+e−→Μ4Îœ4ˉ(N1N1)e^{+}e^{-}\to\nu_{4}\bar {\nu_{4}}(N_{1}N_{1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels (Îœ4(N1)→Ό±W∓)(\nu_{4}(N_{1})\to\mu^{\pm}W^{\mp}) provide cleanest signature at e+e−e^{+}e^{-} colliders. Meanwhile, in our parametrization this channel is dominant. WW bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example we consider the production of 200 GeV mass fourth family neutrinos at s=500\sqrt{s}=500 GeV linear colliders by taking into account di-muon plus four-jet events as signatures.Comment: 16 pages, 3 figures, 10 table

    Misfits in Skyrme-Hartree-Fock

    Full text link
    We address very briefly five critical points in the context of the Skyrme-Hartree-Fock (SHF) scheme: 1) the impossibility to consider it as an interaction, 2) a possible inconsistency of correlation corrections as, e.g., the center-of-mass correction, 3) problems to describe the giant dipole resonance (GDR) simultaneously in light and heavy nuclei, 4) deficiencies in the extrapolation of binding energies to super-heavy elements (SHE), and 5) a yet inappropriate trend in fission life-times when going to the heaviest SHE. While the first two points have more a formal bias, the other three points have practical implications and wait for solution.Comment: 9 pages, 4 figure

    Taming boundary condition changing operator anomalies with the tachyon vacuum

    Get PDF
    Motivated by the appearance of associativity anomalies in the context of superstring field theory, we give a generalized solution built from boundary condition changing operators which can be associated to a generic tachyon vacuum in the KBc subalgebra of the Okawa form. We articulate sufficient conditions on the choice of tachyon vacuum to ensure that ambiguous products do not appear in the equations of motion

    Recent Developments in Precision Electroweak Physics

    Get PDF
    Developments in precision electroweak physics in the two years since the symposium are briefly summarized.Comment: Update on recent developments, prepared for the publication of the Proceedings of Alberto Sirlin Symposium, New York University, October 2000. 10 pages, 1 figur
    • 

    corecore