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Abstract

Motivated by the appearance of associativity anomalies in the context of superstring field theory, we
give a generalized solution built from boundary condition changing operators which can be associated
to a generic tachyon vacuum in the KBc subalgebra of the Okawa form. We articulate sufficient
conditions on the choice of tachyon vacuum to ensure that ambiguous products do not appear in the
equations of motion.
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1 Introduction

In recent years a remarkably simple solution to the equation of motion of open bosonic string field

theory has been found [1], which can relate any pair of time independent open string backgrounds

sharing the same closed string bulk4. The solution is defined by a choice of tachyon vacuum Ψtv

and a pair of string fields (Σ,Σ), which change the worldsheet boundary conditions from the starting

background BCFT0 defining the reference open string field theory, to the target background BCFT∗

we wish to describe. The solution takes the form

Ψ = Ψtv − ΣΨtvΣ, (1.1)

and the equations of motion are satisfied provided

QΨtv
Σ = QΨtv

Σ = 0, (1.2)

ΣΣ = 1. (1.3)

The objects (Σ,Σ) can be expressed in terms of string fields (σ, σ) representing insertions of weight

zero primary boundary condition changing operators in correlation functions on the cylinder [1]. They

multiply as

σσ = 1, (1.4)

σσ =
g∗
g0

, (1.5)

where g is the disk partition function of the corresponding BCFT

gx ≡ 〈1〉BCFTx

disk . (1.6)

The first relation σσ = 1 is the one which is needed to realize (1.3), but the second creates potential

problems with associativity and renders the triple products σσσ undefined if, as is typically the case,

g0 6= g∗, i.e. if the initial and final D-branes systems have a different mass. However, this ambiguity

does not appear in essential computations with the solution.

4The solution of [1] is a subtle but important refinement of the solution found some time ago by Kiermaier, Okawa,
and Soler [2]. Various applications have been studied in [3–6]
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After [1] it was immediately clear that the solution could be generalized to superstring field theory,

at least in its formal structure. However, there is an unexpected setback: this time, ambiguous

products of boundary condition changing operators appear explicitly in the equations of motion. For

simplicity we discuss the solution to the Chern-Simons-like equations of motion of cubic superstring

field theory at picture zero [7, 8], but analogous considerations apply in the Wess-Zumino-Witten-like

formulation [9]. The solution of the superstring contains a term

1√
1 +K

σσ Bγ2 1√
1 +K

, (1.7)

where the unwanted product σσ = g∗
g0

explicitly appears. We propose the following resolution to this

problem. In [1] the state Ψtv was assumed to be the “simple” tachyon vacuum of [10]:

Ψtv =
1√

1 +K

(
c+Q(Bc)

) 1√
1 +K

. (1.8)

The factors 1√
1+K

are too similar to the identity string field, and for the superstring do not provide

sufficient separation between the boundary condition changing operators to avoid ambiguous products.

On the other hand, if the state Ψtv had been Schnabl’s solution [11],

Ψtv =
√
ΩcB

KΩ

1− Ω
c
√
Ω+

√
ΩQ(Bc)

√
Ω, (1.9)

the factors
√
Ω would ensure that σ and σ are always separated by a surface of nonzero width, and

ambiguous products cannot appear.

The above remedy is quite simple. But the technically interesting and nontrivial question is “how

much” σ and σ need to be separated to avoid ambiguities. Apparently, the simple tachyon vacuum

does not provide enough separation, while at the other extreme Schnabl’s tachyon vacuum probably

gives more than necessary. Addressing this question requires formulating a sufficient criterion for the

absence of short-distance ambiguities in expressions involving products of boundary condition changing

operators and elements of the wedge algebra. This understanding is likely to be useful not only in

the present work but for evaluating other computations related to the solution of [1] and possible

generalizations.

This paper is organized as follows. In section 2 we describe the superstring generalization of the

solution of [1], this time allowing for the possibility that Ψtv could be a generic tachyon vacuum of the

Okawa form [12]. We give two formally equivalent expressions for the solution, differing by whether

or not BRST variations of boundary condition changing operators are explicitly evaluated. In section

3 we consider short-distance singularities in the solution, in particular those which concern collisions

of two or three boundary condition changing operators, leading respectively to OPE divergences or

associativity anomalies. In this analysis the dual L− level expansion [13] is helpful for making precise

statements. The headline conclusions are as follows: First, if the solution is expressed in the form

where BRST variations of the boundary condition changing operators are not explicitly evaluated,

OPE divergences can appear in individual terms which, however, cancel. Second, if Ψtv provides even a

little more separation between boundary condition changing operators than the simple tachyon vacuum,
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there are no ambiguous products in the superstring equations of motion. In section 4 we observe that

solutions for different choices of Ψtv can be related by automorphisms reflecting reparameterization

symmetries of the spectrum of K. We end with concluding remarks.

2 Solution

We consider the solution to the Chern-Simons-like equations of motion for the superstring. The bosonic

string solution can be obtained by setting γ ghosts to zero. The solution lives in a subalgebra of states

given by multiplying the string fields

K, B, c, γ2, σ, σ, Qσ, Qσ, (2.1)

which represent operator insertions on the identity string field. Our conventions for K,B, c, γ2 fol-

low [14], to which we refer the reader for definitions and algebraic relations (see also section 4). The

fields σ and σ are defined as in [1], but with the additional specification (for the superstring) that they

represent insertions of matter superconformal primaries of dimension 0. This implies that their BRST

variations are given by

Qσ = c∂σ + γδσ, (2.2)

Qσ = c∂σ + γδσ, (2.3)

where

δσ = G−1/2 · σ (2.4)

represents the worldsheet supersymmetry variation. For the superstring, Qσ and Qσ cannot be ex-

pressed using K,B, c, γ2, σ, σ and are independent generators of the subalgebra.

We consider a class of tachyon vacuum solutions of the Okawa form [12, 15]5

Ψtv =
√
F

(
c
B

H
c+Bγ2

)√
F , (2.5)

where F = F (K) is a suitably well-behaved element of the wedge algebra (a real function of K)

satisfying the conditions [14, 17, 18]

F (0) = 1, F ′(0) < 0, F (∞) = 0, F (K) < 1. (2.6)

We introduce H = H(K) which is related to F through

H =
1− F

K
. (2.7)

The simple tachyon vacuum of [10] is defined by equating

H ≡ F → F =
1

1 +K
(simple tachyon vacuum). (2.8)

5The most general tachyon vacuum solution in the KBc subalgebra is discussed in [16].
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This choice of tachyon vacuum was assumed in [1]. Presently we are concerned with more general

choices of F .

In the following we will not need to be specific about the choice of F (K), but nevertheless it may

be helpful to describe a representative class of tachyon vacuum solutions which are sufficient for our

analysis. Consider a one-parameter family of F (K)s of the form

F (K) =

(
1− 1

ν
K

)ν

=
(−ν)−ν

Γ(−ν)

∫ ∞

0

dt t−ν−1eνtΩt, (2.9)

The parameter ν < 0 represents the leading level of F (K) and its tachyon vacuum solution in the

dual L− level expansion [13]. Note that as ν becomes increasingly negative, the contribution from

states close to the identity string field in the integrand becomes further suppressed. The case ν = −1

corresponds to the simple tachyon vacuum, and ν = −∞ corresponds to Schnabl’s solution. One can

show that

H(K) =

∫ ∞

0

dt
Γ(−ν,−νt)

Γ(−ν)
Ωt, (2.10)

F (K)

H(K)
=

∫ ∞

0

dt

[
eνt
(
ν +

d

dt

)
d

dt
E−ν

(
(−νt)−ν

)]
Ωt, (ν < −1), (2.11)

where Γ(s, x) is the (upper) incomplete gamma function and Eα(x) is the Mittag-Leffler function.

Therefore the solution can be written explicitly as a multi-dimensional integral over wedge states with

insertions. The singularities of H and F/H in the negative half of the complex plane imply that the

inverse Laplace transforms fall off exponentially for large t:

Γ(−ν,−νt)

Γ(−ν)
∼ eνt, eνt

(
ν +

d

dt

)
d

dt
E−ν

(
(−νt)−ν

)
∼ eν(1−cos 2π

ν
)t. (2.12)

Therefore, unlike for Schnabl’s solution, for finite ν < 0 we do not need to place a cutoff on the upper

limit of integration over wedge states and subtract a phantom term.

Once we have Ψtv we can build the solution

Ψ = Ψtv − ΣΨtvΣ, (2.13)

where Σ and Σ are given by

Σ = QΨtv
(
√
HσB

√
H), (2.14)

Σ = QΨtv
(
√
HBσ

√
H). (2.15)

One may confirm that

QΨtv
Σ = QΨtv

Σ = 0, ΣΣ = 1, (2.16)

so that (2.13) formally satisfies the equations of motion. For later analysis it will be useful to substitute

the definitions and expand the solution explicitly. We give the solution in two forms. In the first form,
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we leave Qσ and Qσ as they are, instead of substituting (2.2) and (2.3). We then have

Σ =
√
Hσ

1√
H

+
√
HQσB

√
H +

√
H

[√
F

H
c

√
F

H
, σ

]
B
√
H, (2.17)

Σ =
1√
H

σ
√
H −

√
HBQσ

√
H +

√
HB

[
σ,

√
F

H
c

√
F

H

]
√
H, (2.18)

and

Ψ =
√
F

(
c
B

H
c+Bγ2

)√
F −

√
Hσ

√
F

H

(
c
B

H
c+Bγ2

)√
F

H
σ
√
H +

√
HQσBFQσ

√
H

−
(
√
HQσB

√
F

H
c

√
F

H
σ
√
H + conj.

)
−
(
√
H

[√
F

H
c

√
F

H
, σ

]
B

√
F

H
c

√
F

H
σ
√
H + conj.

)

−
(
√
HQσBF

[
σ,

√
F

H
c

√
F

H

]
√
H + conj.

)
−
√
H

[√
F

H
c

√
F

H
, σ

]
BF

[
σ,

√
F

H
c

√
F

H

]
√
H,

(2.19)

where “conj” denotes the reality conjugate of the previous term (see (4.12)). In the second form of the

solution, we expand the BRST variations using (2.2) and (2.3):

Σ =
√
HBcσ

1√
H

+
√
HcB

1

H
σ
√
H −

√
H

[[
c,

√
F

H

]√
F

H
, σ

]
B
√
H +

√
HγδσB

√
H, (2.20)

Σ =
1√
H

σcB
√
H +

√
Hσ

1

H
Bc

√
H −

√
HB

[
σ,

√
F

H

[√
F

H
, c

]]
√
H −

√
HBγδσ

√
H. (2.21)

The solution becomes:

Ψ =
√
F

(
c
B

H
c+Bγ2

)√
F −

√
Hc

1

H
σBFσ

1

H
c
√
H −

√
Hσ

√
F

H
Bγ2

√
F

H
σ
√
H

+
√
HγδσBFγδσ

√
H −

(√
HγδσBFσ

1

H
c
√
H + conj.

)
−
√
Hσ

[√
F

H
, c

]
B

H

[
c,

√
F

H

]
σ
√
H

+

(
√
Hc

B

H
σ

√
F

H

[√
F

H
, c

]
σ
√
H + conj.

)
−
(
√
HγδσB

√
F

H

[
c,

√
F

H

]
σ
√
H + conj.

)

+

(
√
Hc

B

H
σF

[
σ,

√
F

H

[√
F

H
, c

]]
√
H+conj.

)
+

(
√
HγδσBF

[
σ,

√
F

H

[√
F

H
, c

]]
√
H+conj.

)

+

(
√
Hσ

[√
F

H
, c

]
B

√
F

H

[
σ,

√
F

H

[√
F

H
, c

]]
√
H + conj.

)

−
√
H

[[
c,

√
F

H

]√
F

H
, σ

]
BF

[
σ,

√
F

H

[√
F

H
, c

]]
√
H. (2.22)

This form of the solution generalizes the expression given in [1]. If we set the γ ghosts to zero and set

H = F , only the first two terms survive, giving

Ψ =
1√

1 +K
cB(1 +K)c

1√
1 +K

− 1√
1 +K

c(1 +K)σ
B

1 +K
σ(1 +K)c

1√
1 +K

, (2.23)
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in agreement with [1]. On the other hand, we can do the same thing for the solution as expressed in

(2.19). This gives

Ψ =
1√

1 +K
c(1 +K)Bc

1√
1 +K

− 1√
1 +K

σc(1 +K)Bcσ
1√

1 +K

+
1√

1 +K
Qσ

B

1 +K
Qσ

1√
1 +K

− 1√
1 +K

(QσBcσ − σcBQσ)
1√

1 +K
. (2.24)

This expression for the solution, which does not appear in [1], has a potentially problematic collision

between σ and σ in every term besides the first. We discuss this more in the next section.

3 Taming Anomalies

We wish to determine sufficient conditions on the choice of tachyon vacuum, or equivalently F (K),

such that the solution suffers no difficulties from collisions of boundary condition changing operators.

There can be problems if F (K) is too similar to the identity string field, so that there is not “enough

surface” to prevent σ from colliding with σ. The degree of similarity to the identity string field can be

quantified by the rate of decay of F (K) as K → ∞ [13]. For definiteness we assume that it decays as

a power:

F (K) ∼ Kν, K → ∞, (3.1)

where ν is a real number less than zero. The class of F (K)s described in (2.9) show precisely this

asymptotic behavior for large K. We have

H ∼ 1

K
,

√
F

H
∼ K

ν+1

2 , K → ∞. (3.2)

The more quickly F (K) vanishes as K → ∞, the less “identity-like” the tachyon vacuum becomes, and

the more regular the solution should appear from the point of view of collisions of boundary condition

changing operators. Since the bounds we derive in the bosonic and supersymmetric cases are different,

we use νboson to indicate the rate of decay of F (K) for the bosonic string solution and νsuper for the

superstring solution. The simple tachyon vacuum corresponds to ν = −1, which for the superstring

already poses difficulties. Therefore νsuper should be bounded from above by −1:

νsuper < −1. (3.3)

The question is whether this bound is sufficient, or should be further strengthened.

Associativity anomalies are related to collisions of three boundary condition changing operators,

but there can already be problems from the collision of two. For σ and σ themselves the OPE is

regular,

σ(s)σ(0) = regular, (3.4)

but this still allows singularities in OPEs with ∂σ and ∂σ:

σ(s)∂σ(0) ∼ less singular than simple pole,

∂σ(s)∂σ(0) ∼ less singular than double pole. (3.5)

7



Such singularities can appear when a relevant field is found in the OPE between σ and σ [1]. For the

superstring we additionally assume

σ(s)δσ(0) = regular. (3.6)

Together with (3.5) this implies

δσ(s)δσ(0) ∼ less singular than simple pole,

∂σ(s)δσ(0) ∼ less singular than simple pole. (3.7)

We make the following claim:

Claim 1. Let O1 represent σ, ∂σ or δσ and O2 represent σ, ∂σ or δσ. Then the state

O1G(K)O2 (3.8)

suffers from no OPE divergence provided that its leading level in the dual L− level expansion [13] is

less than or equal to 0 if the state is GSO even, and less than or equal to 1/2 if the state is GSO odd.

This is a technical way of saying that if we expand G(K) as an integral over wedge states

O1G(K)O2 =

∫ ∞

0

dt g(t)O1Ω
tO2, (3.9)

any singularity which appears in the integrand towards t = 0 must be integrable. Consider the solution

expressed in terms of Qσ and Qσ as written in (2.19). The solution contains the terms

√
HQσBFQσ

√
H,

√
HQσB

√
F

H
c

√
F

H
σ
√
H. (3.10)

Computing the BRST variations and ignoring ghosts, which in this case are unimportant, the matter

sector component of these states contains the respective factors:

∂σF∂σ ∼ ∂σKν∂σ, (3.11)

∂σ
F

H
σ ∼ ∂σKν+1σ, K → ∞. (3.12)

By claim 1, these states do not suffer OPE divergence if

ν ≤ −2 (no OPE divergences in (2.19)). (3.13)

The remaining terms do not alter this bound. Therefore, F (K) must fall off as K−2 or faster to

be certain that OPE divergences are absent from (2.19), in either bosonic or supersymmetric cases.

However, the original solution of [1] is finite, even though this bound is violated. In this case (2.19)

should be seen as a singular representation of an otherwise regular solution; its OPE divergences

formally cancel. This is made manifest in the second form of the solution (2.22), which is much safer

from OPE divergence:

νboson ≤ 0 or νsuper ≤ −1 (no OPE divergences in (2.22)). (3.14)
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Therefore when −2 < νboson ≤ 0 or −2 < νsuper ≤ −1 the solution as written in (2.22) will be free of

OPE divergence, but divergences may still be present in (2.19).

Now let’s turn to issues which concern three boundary condition changing operators. These do

not affect the solution Ψ by itself as a state, since it only contains two boundary condition changing

operators. However, they concern the validity of the equations of motion

QΨ+Ψ2 = 0, (3.15)

since Ψ2 contains four boundary condition changing operators. We make the following claim:

Claim 2. Let O1,O2 and O3 represent three primary operators, and consider the state

O1G1(K)O2G2(K)O3. (3.16)

Simultanous collision of all three operators do not render this state undefined provided that its leading

level in the dual L− level expansion is less than h, where h is the lowest dimension of a primary

operator which has nonvanishing contraction with the state.6

To understand this claim, we contract with a test state

ΩOΩ∞, (3.17)

whereO is a primary operator. Since the singularity which interests us concerns short distance behavior

when O1,O2,O3 collide, the precise form of the test state is not crucial. We choose (3.17) since the

sliver state allows us to bypass a conformal transformation from the cylinder to the upper half plane

which complicates the computation without changing the result. Therefore we consider the overlap

Tr
[
Ω∞O1G1(K)O2G2(K)O3ΩO

]
=

∫ ∞

0

dt1dt2 g1(t1)g2(t2)
〈
O1(t1 + t2)O2(t2)O3(0)O(−1)

〉
UHP

,

(3.18)

where g1 and g2 are the inverse Laplace transforms of G1 and G2. We change the integration variables,

L = t1 + t2, θ =
t2

t1 + t2
, (3.19)

and apply a conformal transformation to the 4-point function so that O1 is inserted at 1, O3 is inserted

at 0, and O is inserted at infinity. This gives

Tr
[
Ω∞O1G1(K)O2G2(K)O3ΩO

]

=

∫ ∞

0

dL

∫ 1

0

dθ Lg1(L(1− θ))g2(Lθ)

(
1

L

1

L+ 1

)h1
(
1

L

L+ 1

(Lθ + 1)2

)h2
(
L+ 1

L

)h3
(

L

L+ 1

)h

×
〈
O1(1)O2

(
L+ 1

Lθ + 1
θ

)
O3(0)I ◦ O(0)

〉

UHP

, (3.20)

6There is a straightforward generalization concerning products of n primary operators with wedge states. The case
n = 2 almost implies claim 1. However, claim 1 is slightly stronger, since the OPEs of the boundary condition changing
operators are more regular that would be implied by conformal invariance alone.
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where I(z) = −1/z is the BPZ conformal map. We are interested in the behavior of the integrand

towards L = 0, which is when O1,O2 and O3 collide. For small L we have

g1(L(1− θ)) ∼ L−ν1−1(1− θ)−ν1−1, g2(Lθ) ∼ L−ν2−1θ−ν2−1 (small L), (3.21)

where ν1, ν2 are the leading levels of the dual L− expansion of G1 and G2. For small L, the integrand

of (3.20) is then approximately

L−ν1−ν2−h1−h2−h3+h−1(1− θ)−ν1−1θ−ν2−1
〈
O1(1)O2(θ)O3(0)I ◦ O(0)

〉
UHP

. (3.22)

The integration over θ will be finite assuming that the OPE between O2 and O1, and between O2 and

O3, is sufficiently regular; whether this is the case is equivalent to the question of whether the states

O1G1(K)O2 and O2G2(K)O3 are separately finite, which is not our present concern. Our interest is

the convergence of the integration over L towards L = 0. This will be unproblematic if

ν1 + ν2 + h1 + h2 + h3 < h. (3.23)

This is precisely a bound on the leading level of the state O1G1(K)O2G2(K)O3 in the dual L−

expansion.

As a cross check on this argument, consider the state

σσσ. (3.24)

For matter sector operators, generally the lowest dimension of a probe state will be h = 0. Since the

leading (and only) level of σσσ is zero, claim 2 would imply that the state may be ill-defined. We

know that the state is ambiguous in general due to the associativity anomaly. However, the argument

given below claim 2 does not seem to apply, since (3.21) assumes that the operators are separated by

elements of the wedge algebra whose leading L− level is negative. This can be dealt with by writing

σσσ in the form

σσσ = −∂σ
1

1 +K
σ

1

1 +K
∂σ + (1 +K)σ

1

1 +K
σ

1

1 +K
∂σ

−∂σ
1

1 +K
σ

1

1 +K
σ(1 +K) + (1 +K)σ

1

1 +K
σ

1

1 +K
σ(1 +K). (3.25)

Now the argument below claim 2 applies to all terms; only the first term can be problematic, since

the three boundary condition changing operators form a state whose leading level is zero. Indeed, one

finds a divergence from integrating 1/L towards L = 0. However, the state σσσ is not necessarily

divergent, only ambiguous. In fact one can check that the integration over θ actually vanishes towards

L = 0; therefore the first term effectively contains 0×∞, where the ambiguity of σσσ is hidden.

Now let’s understand the implications of this for the solution. We want to be certain that

Ψ2 (3.26)
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is a well-defined state. For the superstring, the cross terms in Ψ2 which provide the strongest bound

on νsuper arise from the following contributions to the solution as given in (2.22):

√
Hσ

√
F

H
Bγ2

√
F

H
σ
√
H,

√
HγδσBFγδσ

√
H. (3.27)

For example, consider the cross terms in Ψ2 where the above contributions are multiplied by

√
Hc

1

H
σBFσ

1

H
c
√
H. (3.28)

This gives respectively the states

√
Hσ

√
F

H
Bγ2

√
F

H
σσFσ

1

H
c
√
H,

√
HγδσBFγδσσFσ

1

H
c
√
H. (3.29)

Stripping off the ghosts, these states contain the factors

σ
F

H
σσ ∼ σKν+1σσ,

δσFδσσ ∼ δσKνδσσ, (K → ∞). (3.30)

By claim 2, the threefold collision of boundary condition changing operators will be unproblematic if

νsuper < −1
(no triple b.c.c. operator

anomalies in (2.22))
. (3.31)

Cross terms which do not involve (3.27) place a strictly weaker upper bound on νsuper. Therefore, for

the superstring νsuper < −1 is sufficient to ensure that (2.22) is safe from anomalies due to collisions

of boundary condition changing operators. The stronger bound νsuper ≤ −2 is sufficient to further

guarantee that the formally equivalent expression (2.19) is also safe. Note that the contributions to

the solution which give the strongest bound on ν are only present for the superstring. For the bosonic

string, anomalous collisions are absent provided that

νboson < 0
(no triple b.c.c. operator

anomalies in (2.22))
(3.32)

which safely includes the simple tachyon vacuum.

Let us mention a technical point concerning terms in (2.22) involving commutators of c with
√
F/H.

Consider for example the contribution

√
Hσ

[√
F

H
, c

]
B

H

[
c,

√
F

H

]
σ
√
H. (3.33)

Expanding out the commutator and looking at individual terms, we find that σ and σ are separated

according to

σ
F

H2
σ ∼ σKν+2σ, (K → ∞). (3.34)
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To avoid anomalous collisions from such terms, it would appear we need ν < −2. On the other

hand, since these contributions appear from expanding out a commutator, there may be cancellation

of ambiguities. This can be seen more precisely as follows. Let
√
f/h(t) represent the inverse Laplace

transform of
√
F/H, and write

[
c,

√
F

H

]
=

∫ ∞

0

dt
√
f/h(t)[c,Ωt]

=

∫ ∞

0

dt

∫ 1

0

dθ
(
t
√
f/h(t)

)
Ωt(1−θ)∂cΩtθ. (3.35)

Note the extra factor of t which appears in the integrand. This means, from the point of view of

separation of the matter sector boundary condition changing operators, the commutator with c can

be seen as equivalent to [
c,

√
F

H

]
→ − d

dK

√
F

H
. (3.36)

In particular, in (3.33) the boundary condition changing operators are separated as

σ

(
d

dK

√
F

H

)2
1

H
σ ∼ σKνσ, (K → ∞), (3.37)

which is significantly more mild than (3.34). In this way, terms involving commutators of c with√
F/H do not require a stronger bound than νsuper < −1 or νboson < 0.

Let us make an important caveat to the above discussion. In [1] the bosonic string solution was

written in two forms:

Ψ =
1√

1 +K
cB(1 +K)c

1√
1 +K

− 1√
1 +K

c(1 +K)σ
B

1 +K
σ(1 +K)c

1√
1 +K

(3.38)

=
1√

1 +K
cB(1− σσ)(1 +K)c

1√
1 +K

− 1√
1 +K

c∂σ
B

1 +K
σ(1 +K)c

1√
1 +K

. (3.39)

The second form of the solution was useful for computing coefficients in the Fock basis. However, in

the second form the computation of Ψ2 will be ambiguous due to associativity anomalies. The origin

of the problem is that the first form of the solution, where Ψ2 is well-defined, has been reexpressed as

a sum of terms whose star products are individually ambiguous. The fact that this is possible does

not reflect poorly on the solution; it is always possible to render a well-defined expression ambiguous

by adding and subtracting singular terms. But this raises the possibility that there may be a different

way to write the solution for the superstring where ambiguities in Ψ2 disappear, even if νsuper ≥ −1.

Specifically, the bounds we have derived on the asymptotic behavior of F (K) are sufficient conditions

to avoid OPE divergences and associativity anomalies. But they may not be necessary. We leave this

question to future work.
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4 Automorphisms

For some purposes it is useful to regard the string field K as having a spectrum consisting of non-

negative real numbers. This follows from the observation that the string field

1

K − κ
(4.1)

is divergent if κ ≥ 0.7 Consider the connected component8 of the diffeomorphism group on the

spectrum

Diff0(R≥0). (4.3)

This automatically defines a group of automorphisms of the algebra of wedge states, defined through

φ ◦G(K) = G(φ(K)), φ ∈ Diff0(R≥0). (4.4)

More surprisingly, it is possible to generalize this into an automorphism group of the KBc subalge-

bra [21]. Applications of this symmetry have been discussed in [13, 20–26]. Here we show that the

automorphisms can be further extended to act on boundary condition changing operators. Applying

such automorphisms to the solution (1.1) turns out to be equivalent to changing the choice of tachyon

vacuum. Therefore the solutions discussed in this work can be related through diffeomorphism of the

spectrum of K.

The solution lives in a subalgebra given by multiplying generators

K, B, c, γ2, σ, σ, Qσ, Qσ. (4.5)

This is a graded differential associative ∗-algebra. An automorphism of such an algebra should satisfy

gh(φ ◦A) = gh(A), (4.6)

φ ◦ (QA) = Q(φ ◦A), (4.7)

φ ◦ (AB) = (φ ◦A)(φ ◦B), (4.8)

φ ◦ (A‡) = (φ ◦A)‡, (4.9)

7Actually, this state fails to have a well-defined expression as a superposition of wedge states if Re(κ) ≥ 0. From this
point of view, the spectrum of K could be identified with the positive half of the complex plane. However, this may
seem unnatural since K is a real string field and ought to have a real spectrum. Furthermore, it is not completely clear
that the state is actually divergent for complex κ with positive real part. A finite expression for the state in the Virasoro
basis can be given following [14]. The prescription is to write the wedge state Ωα in the Virasoro basis, and for each
appearance of 1

(α+1)h
in the expansion coefficients we replace

1

(1 + α)h
→

1

(h− 1)!

∫
∞

0
dK Kh−1e−K

1

K − κ
. (4.2)

The integral is finite as long as κ is not zero or positive, which supports the idea that the spectrum should be non-
negative reals. However, more work is needed to verify that this prescription gives an adequate definition of the state.
For the purposes of the present discussion we leave these subtleties to the side, and proceed under the assumption that
the spectrum of K is real and non-negative.

8There has been interesting discussion of diffeomorphisms of the spectrum of K which are not homotopic to the
identity, generated by the transformation K → 1/K [20]. The resulting automorphisms are singular, and we will not
consider them.
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where “gh” denotes ghost number and ‡ denotes reality conjugation of the string field. An important

part of realizing the automorphism group is understanding what relations the generators of the algebra

should satisfy. This is not completely trivial, since the relevant collection of identities is actually

a proper subset of those satisfied by K,B, c, γ2, σ, σ,Qσ,Qσ as defined in the conventional way by

operator insertions on the identity string field, as assumed in section 2. We postulate the following

algebraic relations,

Bc+ cB = 1, B2 = c2 = 0, [K,B] = 0;

[B, γ2] = [c, γ2] = 0;

[B, σ] = [B, σ] = 0, [c, σ] = [c, σ] = 0;

σσ = 1;

[B,Qσ] = [K,σ], [B,Qσ] = [K,σ]; (4.10)

the following differential relations,

QB = K, QK = 0, Qc = cKc− γ2

Qγ2 = cKγ2 − γ2Kc; (4.11)

and the following properties under conjugation:

K‡ = K, B‡ = B, c‡ = c;

(γ2)‡ = γ2;

σ‡ = σ, σ‡ = σ;

(Qσ)‡ = −Qσ, (Qσ)‡ = −Qσ. (4.12)

The conventional understanding of the generators as operator insertions on the identity string field

results in an infinite number of additional (and less important) relations, referred to as “auxiliary

identities” in [13]. A notable example of such a relation is

[σ, γ2] = 0. (4.13)

This identity is absent from (4.10), and henceforth we assume that it does not hold.
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Given φ ∈ Diff0(R≥0) we have a corresponding automorphism of the above subalgebra defined by

K̂ = φ ◦K = φ(K), (4.14)

B̂ = φ ◦B = B
φ(K)

K
, (4.15)

ĉ = φ ◦ c = cB
K

φ(K)
c, (4.16)

γ̂2 = φ ◦ γ2 = cB
K

φ(K)
γ2 + γ2 K

φ(K)
Bc, (4.17)

σ̂ = φ ◦ σ = cB

√
K

φ(K)
σ

√
φ(K)

K
+

√
φ(K)

K
σ

√
K

φ(K)
Bc, (4.18)

σ̂ = φ ◦ σ = cB

√
K

φ(K)
σ

√
φ(K)

K
+

√
φ(K)

K
σ

√
K

φ(K)
Bc. (4.19)

One can check that the transformed generators (denoted with hat) satisfy all relations (4.10)-(4.12).

However, they do not satisfy auxiliary identities, such as (4.13). The automorphism is characterized

by two states in the wedge algebra
φ(K)

K
,

K

φ(K)
. (4.20)

These states look potentially singular at K = 0. To ensure that they are well-defined, we work with

the connected component of the diffeomorphism group, and further assume that the diffeomorphisms

are (at least) once differentiable at K = 0. This implies

φ(0) = 0, φ′(0) > 0, (4.21)

which is sufficient to ensure that the automorphism is regular at K = 0. One particularly simple type

of diffeomorphism is a scale transformation of the spectrum of K

φ(K) = αK, α > 0. (4.22)

This leads to

φ ◦K = αK, φ ◦B = αB, φ ◦ c = 1

α
c, φ ◦ γ2 =

1

α
γ2, φ ◦ σ = σ, φ ◦ σ = σ. (4.23)

In this case the automorphism is equivalent to the well-known midpoint-preserving reparameterization

generated by L−.

Now we can understand how the automorphisms act on the solution (1.1). If the solution is

characterized by some F (K), one can show that the tachyon vacuum (2.5) and the boundary condition

changing fields (2.18) transform as

φ ◦Ψtv[F ] = Ψtv[φ ◦ F ],

φ ◦ Σ[F ] = Σ[φ ◦ F ],

φ ◦ Σ[F ] = Σ[φ ◦ F ], (4.24)
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where the dependence on F is explicitly shown in the brackets. This immediately implies that the

solution itself transforms as

φ ◦Ψ[F ] = Ψ[φ ◦ F ]. (4.25)

Therefore the automorphism simply changes the choice of F characterizing the solution, or equiva-

lently, the choice of tachyon vacuum. Note that (4.21) implies that the automorphism preserves the

conditions (2.6) on the choice of F . Particularly relevant for present purposes is understanding how

diffeomorphisms affect the collision of boundary condition changing operators inside the solution. If

we wish to transform from F whose leading level is ν < 0 in the dual L− expansion, to F ′ whose

leading level is ν′ < 0, the leading level of φ(K) should be

ν′

ν
> 0. (4.26)

The level is positive, so φ(K) necessarily diverges as K → ∞; this is consistent with the assumption

that φ is in the connected component of the diffeomorphism group of R≥0. Note that if we want to

produce a more regular solution, so that ν′ is more negative than ν, the diffeomorphism necessarily

grows more than linearly for large K. In a sense, to produce a more regular solution we need to push

the spectrum of K out to infinity. This means that the more regular the desired solution, the more

singular the state φ(K) must be from the perspective of the identity string field [13]. An extreme

example of this is the diffeomorphism relating the simple tachyon vacuum to Schnabl’s solution:

φ(K) = Ω−1 − 1. (4.27)

The inverse wedge state Ω−1 is so singular that it does not even have a well-defined Fock space

expansion. To avoid this kind of problem one can impose conditions on the asymptotic behavior of

elements in Diff0(R≥0) towards K = ∞, at the cost of limiting the range of solutions that can be

related by automorphism, though we will not do so here. If a choice of F can be related to 1
1+K

through diffeomorphism, the above analysis implies that it is formally possible to express the solution

in the same form as the solution based on the simple tachyon vacuum:

Ψ[F ] =
1√

1 + K̂

(
ĉ+Q(B̂ĉ)

) 1√
1 + K̂

− 1√
1 + K̂

σ̂
(
ĉ+Q(B̂ĉ)

)
σ̂

1√
1 + K̂

+
1√

1 + K̂
Qσ̂

B̂

1 + K̂
Qσ̂

1√
1 + K̂

− 1√
1 + K̂

Qσ̂B̂ĉσ̂
1√

1 + K̂
+

1√
1 + K̂

σ̂ĉB̂Qσ̂
1√

1 + K̂
,

(4.28)

with the appropriately transformed generators. One must be careful however, since this expression

inherits many of the problems with boundary condition changing operator collisions which appear for

the simple tachyon vacuum. For example, the term

1√
1 + K̂

σ̂ĉσ̂
1√

1 + K̂
=

√
FcB

√
KF

1− F
σσ

√
KF

1− F
c
√
F (4.29)

contains the undesirable product σσ. We know that the solution is well-defined from the point of view

of boundary condition changing operator collisions if the leading level of F is −2 or lower. Therefore

such singular terms must formally cancel.
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It is not always possible to relate two F s by diffeomorphism of the spectrum of K. It will only

be possible if they share the same number of extrema and values at the extrema. This implies that

tachyon vacuum and boundary condition changing operator solutions can be partitioned into equiva-

lence classes under diffeomorphism symmetry. Since any change of F subject to (2.6) amounts to a

gauge transformation, diffeomorphism of the spectrum of K gives a finer notion of equivalence than

is provided by gauge symmetry. Whether this finer notion of equivalence has some deeper meaning is

not clear.

5 Conclusion

Having taken care of boundary condition changing operator collisions, we now have an infinite class

of well-defined solutions of cubic superstring field theory which can describe any time-independent

background. However, cubic superstring field theory is a somewhat handicapped framework; what we

really want is the analogue of this solution in the context of the nonpolynomial Wess-Zumino-Witten-

like superstring field theory. The difficulty here is that there is only one known analytic solution for

the tachyon vacuum [27], and it seems difficult to modify it so as to provide additional separation

between σ and σ. This is most likely a technical problem. The tachyon vacuum of [27] is an expression

for the group element eΦ of the Wess-Zumino-Witten-like action, and the leading level of Φ in the dual

L− level expansion is −1/2. To regulate boundary condition changing operator collisions we need the

leading level to be strictly less than −1/2, and such solutions always seem to require infinite sums over

correlation functions containing increasing numbers of superghost insertions for each component field of

the Fock space expansion. It is not known how to understand the convergence of these sums. However,

it is not difficult to find formal algebraic expressions for such solutions, and provided convergence issues

can be brought under control, we would have the desired generalization of [1] to the Wess-Zumino-

Witten-like theory. Whether this is the most useful way to proceed is not clear to us, but as a general

matter it would be desirable to have analytic control of a wider class of tachyon vacuum solutions in

the nonpolynomial framework.

One fascinating complication of the Wess-Zumino-Witten-like formulation is that tachyon vacuum

solutions are not guaranteed to be universal, and for stable D-brane systems may not even exist.

The straightforward generalization of [1] therefore only seems to apply to D-branes with vanishing

topological charge. By contrast, in cubic superstring field theory all open string backgrounds have

a universal solution for the tachyon vacuum, even if tachyons are absent from the spectrum [15].

Therefore a complete generalization of [1] to the nonpolynomial framework requires coming to terms

with how D-brane charges are realized in the string field algebra, which opens the way to a whole class

of new and interesting questions. We hope that the present work is a useful step in this direction.
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