1,710 research outputs found

    A Spinor Theory of Gravity and the Cosmological Framework

    Get PDF
    Recently we have presented a new formulation of the theory of gravity based on an implementation of the Einstein Equivalence Principle distinct from General Relativity. The kinetic part of the theory - that describes how matter is affected by the modified geometry due to the gravitational field - is the same as in General Relativity. However, we do not consider the metric as an independent field. Instead, it is an effective one, constructed in terms of two fundamental spinor fields Ψ\Psi and Υ\Upsilon and thus the metric does not have a dynamics of its own, but inherits its evolution through its relation with the fundamental spinors. In the first paper it was shown that the metric that describes the gravitational field generated by a compact static and spherically symmetric configuration is very similar to the Schwarzschild metric. In the present paper we describe the cosmological framework in the realm of the Spinor Theory of Gravity

    MACHOs, White Dwarfs, and the Age of the Universe

    Full text link
    (Abridged Abstract) A favored interpretation of recent microlensing measurements towards the Large Magellanic Cloud implies that a large fraction (i.e. 10--50%) of the mass of the galactic halo is composed of white dwarfs. We compare model white dwarf luminosity functions to the data from the observational surveys in order to determine a lower bound on the age of any substantial white dwarf halo population (and hence possibly on the age of the Universe). We compare various theoretical white dwarf luminosity functions, in which we vary hese three parameters, with the abovementioned survey results. From this comparison, we conclude that if white dwarfs do indeed constitute more than 10% of the local halo mass density, then the Universe must be at least 10 Gyr old for our most extreme allowed values of the parameters. When we use cooling curves that account for chemical fractionation and more likely values of the IMF and the bolometric correction, we find tighter limits: a white dwarf MACHO fraction of 10% (30%) requires a minimum age of 14 Gyr (15.5 Gyr). Our analysis also indicates that the halo white dwarfs almost certainly have helium-dominated atmospheres.Comment: Final version accepted for publication, straight TeX formate, 6 figs, 22 page

    Hierarchy and Wave Functions in a Simple Quantum Cosmology

    Full text link
    Astrophysical observations indicate the expansion of the universe is accelerating. Applying the holographic entropy conjecture to the cosmological horizon in an accelerating universe suggests the universe has only a finite number of degrees of freedom. This is consistent with a closed universe arising from a quantum fluctuation, with zero total quantum numbers. If space-time has eleven dimensions, and the universe began as a closed force-symmetric ten-dimensional space with characteristic dimension L, seven of the space dimensions must have collapsed to generate the three large space dimensions we see. The holographic conjecture then suggests the initial length scale L must be roughly twenty orders of magnitude larger than the Planck length. Accordingly, the nuclear force must be roughly forty orders of magnitude stronger than gravity, possibly resolving the force hierarchy problem. A wavefunction for the radius of curvature of the universe can be obtained from the Schrodinger equation derived by Elbaz and Novello. The product of this wavefunction and its complex conjugate can be interpreted as the probability density for finding a given radius of curvature in one of the infinity of measurements of the radius of curvature possible (in principle) at any location in a homogeneous isotropic universe.Comment: 4 pages, no figures, abstract corrected to insert omitted word

    NGC6240: extended CO structures and their association with shocked gas

    Full text link
    We present deep CO observations of NGC6240 performed with the IRAM Plateau de Bure Interferometer (PdBI). NGC6240 is the prototypical example of a major galaxy merger in progress, caught at an early stage, with an extended, strongly-disturbed butterfly-like morphology and the presence of a heavily obscured active nucleus in the core of each progenitor galaxy. The CO line shows a skewed profile with very broad and asymmetric wings detected out to velocities of -600 km/s and +800 km/s with respect to the systemic velocity. The PdBI maps reveal the existence of two prominent structures of blueshifted CO emission. One extends eastward, i.e. approximately perpendicular to the line connecting the galactic nuclei, over scales of ~7 kpc and shows velocities up to -400 km/s. The other extends southwestward out to ~7 kpc from the nuclear region, and has a velocity of -100 km/s with respect to the systemic one. Interestingly, redshifted emission with velocities 400 to 800 km/s is detected around the two nuclei, extending in the east-west direction, and partly overlapping with the eastern blue-shifted structure, although tracing a more compact region of size ~1.7 kpc. The overlap between the southwestern CO blob and the dust lanes seen in HST images, which are interpreted as tidal tails, indicates that the molecular gas is deeply affected by galaxy interactions. The eastern blueshifted CO emission is co-spatial with an Halpha filament that is associated with strong H2 and soft X-ray emission. The analysis of Chandra X-ray data provides strong evidence for shocked gas at the position of the Halpha emission. Its association with outflowing molecular gas supports a scenario where the molecular gas is compressed into a shock wave that propagates eastward from the nuclei. If this is an outflow, the AGN are likely the driving force.Comment: Accepted for publication in A&

    Simple quantum cosmology: Vacuum energy and initial state

    Full text link
    A static non-singular 10-dimensional closed Friedmann universe of Planck size, filled with a perfect fluid with an equation of state with w = -2/3, can arise spontaneously by a quantum fluctuation from nothing in 11-dimensional spacetime. A quantum transition from this state can initiate the inflationary quantum cosmology outlined in Ref. 2 [General Relativity and Gravitation 33, 1415, 2001 - gr-qc/0103021]. With no fine-tuning, that cosmology predicts about 60 e-folds of inflation and a vacuum energy density depending only on the number of extra space dimensions (seven), G, h, c and the ratio between the strength of gravity and the strength of the strong force. The fraction of the total energy in the universe represented by this vacuum energy depends on the Hubble constant. Hubble constant estimates from WMAP, SDSS, the Hubble Key Project and Sunyaev-Zeldovich and X-ray flux measurements range from 60 to 72 km/(Mpc sec). With a mid-range Hubble constant of 65 km/(Mpc sec), the model in Ref. 2 predicts Omega-sub-Lambda = 0.7Comment: To be published in General Relativity and Gravitation, Vol. 37, May 2005. 5 pages, no figure

    X-ray observations of highly obscured τ_(9.7 μm) > 1 sources: an efficient method for selecting Compton-thick AGN?

    Get PDF
    Observations with the IRS spectrograph onboard Spitzer have found many sources with very deep Si features at 9.7 μm, that have optical depths of τ > 1. Since it is believed that a few of these systems in the local Universe are associated with Compton-thick active galactic nuclei (hereafter AGN), we set out to investigate whether the presence of a strong Si absorption feature is a good indicator of a heavily obscured AGN. We compile X-ray spectroscopic observations available in the literature on the optically-thick (τ_(9.7 μm) > 1) sources from the 12 μm IRAS Seyfert sample. We find that the majority of the high-τ optically confirmed Seyferts (six out of nine) in the 12 μm sample are probably Compton-thick. Thus, we provide direct evidence of a connection between mid-IR optically-thick galaxies and Compton-thick AGN, with the success rate being close to 70% in the local Universe. This is at least comparable to, if not better than, other rates obtained with photometric information in the mid to far-IR, or even mid-IR to X-rays. However, this technique cannot provide complete Compton-thick AGN samples, i.e., there are many Compton-thick AGN that do not display significant Si absorption, with the most notable example being NGC1068. After assessing the validity of the high 9.7 μm optical-depth technique in the local Universe, we attempt to construct a sample of candidate Compton-thick AGN at higher redshifts. We compile a sample of seven high-τ Spitzer sources in the Great Observatories Origins Deep Survey (GOODS) and five in the Spitzer First-Look Survey. All these have been selected to have no PAH features (EW_(6.2 μm) 10^(42) erg s^(−1)) of the detected GOODS sources corroborates that these are AGN. For FLS, ancillary optical spectroscopy reveals hidden nuclei in two more sources. SED fitting can support the presence of an AGN in the vast majority of sources. Owing to the limited photon statistics, we cannot derive useful constraints from X-ray spectroscopy on whether these sources are Compton-thick. However, the low L_(X)/L_(6 μm) luminosity ratios, suggest that at least four out of the six detected sources in GOODS may be associated with Compton-thick AGN
    • …
    corecore