1,847 research outputs found
The impact of stellar rotation on the CNO abundance patterns in the Milky Way at low metallicities
We investigate the effect of new stellar models, which take rotation into
account, computed for very low metallicities on the chemical evolution of the
earliest phases of the Milky Way. We check the impact of these new stellar
yields on a model for the halo of the Milky Way that can reproduce the observed
halo metallicity distribution. In this way we try to better constrain the ISM
enrichment timescale, which was not done in our previous work. The stellar
models adopted in this work were computed under the assumption that the ratio
of the initial rotation velocity to the critical velocity of stars is roughly
constant with metallicity. This naturally leads to faster rotation at lower
metallicity, as metal poor stars are more compact than metal rich ones. We find
that the new Z = 10-8 stellar yields computed for large rotational velocities
have a tremendous impact on the interstellar medium nitrogen enrichment for
log(O/H)+12 < 7 (or [Fe/H]< -3). We show that upon the inclusion of the new
stellar calculations in a chemical evolution model for the galactic halo with
infall and outflow, both high N/O and C/O ratios are obtained in the very-metal
poor metallicity range in agreement with observations. Our results give further
support to the idea that stars at very low metallicities could have initial
rotational velocities of the order of 600-800kms-1. An important contribution
to N from AGB stars is still needed in order to explain the observations at
intermediate metallicities. One possibility is that AGB stars at very low
metallicities also rotate fast. This could be tested in the future, once
stellar evolution models for fast rotating AGB stars will be available.Comment: Contribution to Nuclei in the Cosmos IX (Proceedings of Science - 9
pages, 4 figs., accepted) - Version 2: one reference added in the caption of
Fig.
SPINSTARS at low metallicities
The main effect of axial rotation on the evolution of massive PopIII stars is
to trigger internal mixing processes which allow stars to produce significant
amounts of primary nitrogen 14 and carbon 13. Very metal poor massive stars
produce much more primary nitrogen than PopIII stars for a given initial mass
and rotation velocity. The very metal poor stars undergo strong mass loss
induced by rotation. One can distinguish two types of rotationnaly enhanced
stellar winds: 1) Rotationally mechanical winds occurs when the surface
velocity reaches the critical velocity at the equator, {\it i.e.} the velocity
at which the centrifugal acceleration is equal to the gravity; 2) Rotationally
radiatively line driven winds are a consequence of strong internal mixing which
brings large amounts of CNO elements at the surface. This enhances the opacity
and may trigger strong line driven winds. These effects are important for an
initial value of of 0.54 for a 60 M at
, {\it i.e.} for initial values of
higher than the one (0.4) corresponding to observations at solar .
These two effects, strong internal mixing leading to the synthesis of large
amounts of primary nitrogen and important mass losses induced by rotation,
occur for between about 10 and 0.001. For metallicities above 0.001
and for reasonable choice of the rotation velocities, internal mixing is no
longer efficient enough to trigger these effects.Comment: 5 pages, 4 figures, to be published in the conference proceedings of
First Stars III, Santa Fe, 200
The Truth in Compatibilism and the truth of Libertarianism
The paper offers the outlines of a response to the often-made suggestion is that it is impossible to see how indeterminism could possibly provide us with anything that we might want in the way of freedom, anything that could really amount to control, as opposed merely to an openness in the flow of reality that would constitute merely the injection of chance, or randomness, into the unfolding of the processes which underlie our activity. It is suggested that the best first move for the libertarian is to make a number of important concessions to the compatibilist. It should be conceded, in particular, that certain sorts of alternative possibilities are neither truly available to real, worldly agents, nor required in order that those agents should act freely; and it should be admitted also that it is the compatibilist who tends to give the most plausible sorts of analyses of many of the ‘can’ and ‘could have’ statements which seem to need to be assertible of those agents we regard as free. But these concessions do not bring compatibilism itself in their wake. The most promising version of libertarianism, it is argued, should be based on the idea that agency itself (and not merely some special instances of it which we might designate with the honorific appellation ‘free’) is inconsistent with determinism. This version of libertarianism, it is claimed, can avoid the objection that indeterminism is as difficult to square with true agential control as determinism can sometimes seem to be
Taking the self out of self-rule
Many philosophers believe that agents are self-ruled only when ruled by their (authentic) selves. Though this view is rarely argued for explicitly, one tempting line of thought suggests that self-rule is just obviously equivalent to rule by the self. However, the plausibility of this thought evaporates upon close examination of the logic of ‘self-rule’ and similar reflexives. Moreover, attempts to rescue the account by recasting it in negative terms are unpromising. In light of these problems, this paper instead proposes that agents are self-ruled only when not ruled by others. One reason for favouring this negative social view is its ability to yield plausible conclusions concerning various manipulation cases that are notoriously problematic for nonsocial accounts of self-rule. A second reason is that the account conforms with ordinary usage. It is concluded that self-rule may be best thought of as an essentially social concept
Children's construction task performance and spatial ability: controlling task complexity and predicting mathematics performance.
This paper presents a methodology to control construction task complexity and examined the relationships between construction performance and spatial and mathematical abilities in children. The study included three groups of children (N = 96); ages 7-8, 10-11, and 13-14 years. Each group constructed seven pre-specified objects. The study replicated and extended previous findings that indicated that the extent of component symmetry and variety, and the number of components for each object and available for selection, significantly predicted construction task difficulty. Results showed that this methodology is a valid and reliable technique for assessing and predicting construction play task difficulty. Furthermore, construction play performance predicted mathematical attainment independently of spatial ability
- …