1,563 research outputs found
Global analysis of muon decay measurements
We have performed a global analysis of muon decay measurements to establish
model-independent limits on the space-time structure of the muon decay matrix
element. We find limits on the scalar, vector and tensor coupling of right- and
left-handed muons to right- and left-handed electrons. The limits on those
terms that involve the decay of right-handed muons to left-handed electrons are
more restrictive than in previous global analyses, while the limits on the
other non-standard model interactions are comparable. The value of the Michel
parameter eta found in the global analysis is -0.0036 \pm 0.0069, slightly more
precise than the value found in a more restrictive analysis of a recent
measurement. This has implications for the Fermi coupling constant G_F.Comment: 5 pages, 3 table
Lambda hyperonic effect on the normal driplines
A generalized mass formula is used to calculate the neutron and proton drip
lines of normal and lambda hypernuclei treating non-strange and strange nuclei
on the same footing. Calculations suggest existence of several bound
hypernuclei whose normal cores are unbound. Addition of Lambda or,
Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the
neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur
Refractive effects in the scattering of loosely bound nuclei
A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV
with light targets has been undertaken. With the determination of unambiguous
optical potentials in mind, elastic data for four projectile-target
combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been
measured on a large angular range. The kinematical regime encompasses a region
where the mean field (optical potential) has a marked variation with mass and
energy, but turns out to be sufficiently surface transparent to allow strong
refractive effects to be manifested in elastic scattering data at intermediate
angles. The identified exotic feature, a "plateau" in the angular distributions
at intermediate angles, is fully confirmed in four reaction channels and
interpreted as a pre-rainbow oscillation resulting from the interference of the
barrier and internal barrier farside scattering subamplitudes.Comment: 19 pages, 14 figures, 3 tables to submit to Phys. Rev.
Magnetic Field Evolution in Merging Clusters of Galaxies
We present initial results from the first 3-dimensional numerical
magnetohydrodynamical (MHD) simulations of magnetic field evolution in merging
clusters of galaxies. Within the framework of idealized initial conditions
similar to our previous work, we look at the gasdynamics and the magnetic field
evolution during a major merger event in order to examine the suggestion that
shocks and turbulence generated during a cluster/subcluster merger can produce
magnetic field amplification and relativistic particle acceleration and, as
such, may play a role in the formation and evolution of cluster-wide radio
halos. The ICM, as represented by the equations of ideal MHD, is evolved
self-consistently within a changing gravitational potential defined largely by
the collisionless dark matter component represented by an N-body particle
distribution. The MHD equations are solved by the Eulerian, finite-difference
code, ZEUS. The particles are evolved by a standard particle-mesh (PM) code. We
find significant evolution of the magnetic field structure and strength during
two distinct epochs of the merger evolution.Comment: 21 pages, 7 figures, Figure 2 is color postscript. Accepted for
publication in Ap
Three-body decay of Be
Three-body correlations for the ground-state decay of the lightest two-proton
emitter Be are studied both theoretically and experimentally. Theoretical
studies are performed in a three-body hyperspherical-harmonics cluster model.
In the experimental studies, the ground state of Be was formed following
the decay of a C beam inelastically excited through
interactions with Be and C targets. Excellent agreement between theory and
experiment is obtained demonstrating the existence of complicated correlation
patterns which can elucidate the structure of Be and, possibly, of the
A=6 isobar.Comment: 17 pages, 21 figures, 5 table
Molecular Structures in T=1 states of 10B
Multi-center (molecular) structures can play an important role in light
nuclei. The highly deformed rotational band in 10Be with band head at 6.179 MeV
has been observed recently and suggested to have an exotic alpha:2n:alpha
configuration. A search for states with alpha:pn:alpha two-center molecular
configurations in 10B that are analogous to the states with alpha:2n:alpha
structure in 10Be has been performed. The T=1 isobaric analog states in 10B
were studied in the excitation energy range of E=8.7-12.1 MeV using the
reaction 1H(9Be,alpha)6Li*(T=1, 0+, 3.56 MeV). An R-matrix analysis was used to
extract parameters for the states observed in the (p,alpha) excitation
function. Five T=1 states in 10B have been identified. The known 2+ and 3-
states at 8.9 MeV have been observed and their partial widths have been
measured. The spin-parities and partial widths for three higher lying states
were determined. Our data support theoretical predictions that the 2+ state at
8.9 MeV (isobaric analog of the 7.54 MeV state in 10Be) is a highly clustered
state and can be identified as a member of the alpha:np:alpha rotational band.
The next member of this band, the 4+ state, has not been found. A very broad 0+
state at 11 MeV that corresponds to pure alpha+6Li(0+,T=1) configuration is
suggested and it might be related to similar structures found in 12C, 18O and
20Ne.Comment: 10 pages, 10 figures, accepted in Physical Review
- …
