1,563 research outputs found

    Global analysis of muon decay measurements

    Get PDF
    We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other non-standard model interactions are comparable. The value of the Michel parameter eta found in the global analysis is -0.0036 \pm 0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G_F.Comment: 5 pages, 3 table

    Lambda hyperonic effect on the normal driplines

    Full text link
    A generalized mass formula is used to calculate the neutron and proton drip lines of normal and lambda hypernuclei treating non-strange and strange nuclei on the same footing. Calculations suggest existence of several bound hypernuclei whose normal cores are unbound. Addition of Lambda or, Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur

    Refractive effects in the scattering of loosely bound nuclei

    Get PDF
    A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been measured on a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a "plateau" in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier farside scattering subamplitudes.Comment: 19 pages, 14 figures, 3 tables to submit to Phys. Rev.

    Magnetic Field Evolution in Merging Clusters of Galaxies

    Get PDF
    We present initial results from the first 3-dimensional numerical magnetohydrodynamical (MHD) simulations of magnetic field evolution in merging clusters of galaxies. Within the framework of idealized initial conditions similar to our previous work, we look at the gasdynamics and the magnetic field evolution during a major merger event in order to examine the suggestion that shocks and turbulence generated during a cluster/subcluster merger can produce magnetic field amplification and relativistic particle acceleration and, as such, may play a role in the formation and evolution of cluster-wide radio halos. The ICM, as represented by the equations of ideal MHD, is evolved self-consistently within a changing gravitational potential defined largely by the collisionless dark matter component represented by an N-body particle distribution. The MHD equations are solved by the Eulerian, finite-difference code, ZEUS. The particles are evolved by a standard particle-mesh (PM) code. We find significant evolution of the magnetic field structure and strength during two distinct epochs of the merger evolution.Comment: 21 pages, 7 figures, Figure 2 is color postscript. Accepted for publication in Ap

    Three-body decay of 6^{6}Be

    Get PDF
    Three-body correlations for the ground-state decay of the lightest two-proton emitter 6^{6}Be are studied both theoretically and experimentally. Theoretical studies are performed in a three-body hyperspherical-harmonics cluster model. In the experimental studies, the ground state of 6^{6}Be was formed following the α\alpha decay of a 10^{10}C beam inelastically excited through interactions with Be and C targets. Excellent agreement between theory and experiment is obtained demonstrating the existence of complicated correlation patterns which can elucidate the structure of 6^{6}Be and, possibly, of the A=6 isobar.Comment: 17 pages, 21 figures, 5 table

    Molecular Structures in T=1 states of 10B

    Full text link
    Multi-center (molecular) structures can play an important role in light nuclei. The highly deformed rotational band in 10Be with band head at 6.179 MeV has been observed recently and suggested to have an exotic alpha:2n:alpha configuration. A search for states with alpha:pn:alpha two-center molecular configurations in 10B that are analogous to the states with alpha:2n:alpha structure in 10Be has been performed. The T=1 isobaric analog states in 10B were studied in the excitation energy range of E=8.7-12.1 MeV using the reaction 1H(9Be,alpha)6Li*(T=1, 0+, 3.56 MeV). An R-matrix analysis was used to extract parameters for the states observed in the (p,alpha) excitation function. Five T=1 states in 10B have been identified. The known 2+ and 3- states at 8.9 MeV have been observed and their partial widths have been measured. The spin-parities and partial widths for three higher lying states were determined. Our data support theoretical predictions that the 2+ state at 8.9 MeV (isobaric analog of the 7.54 MeV state in 10Be) is a highly clustered state and can be identified as a member of the alpha:np:alpha rotational band. The next member of this band, the 4+ state, has not been found. A very broad 0+ state at 11 MeV that corresponds to pure alpha+6Li(0+,T=1) configuration is suggested and it might be related to similar structures found in 12C, 18O and 20Ne.Comment: 10 pages, 10 figures, accepted in Physical Review
    corecore