1,071 research outputs found

    Computation of aerodynamic interference between lifting surfaces and lift- and cruise-fans

    Get PDF
    Sequence of three computer programs predicts aerodynamic interference on lifting surfaces of transport-type aircraft which are equipped with lift and cruise fans; for example, high-bypass-ratio engine and wing-pylon tail configuration or fuselage-mounted lift-fan and wing-tail configuration

    Calculation of the longitudinal aerodynamic characteristics of STOL aircraft with externally-blown jet-augmented flaps

    Get PDF
    A theoretical investigation was made to develop methods for predicting the longitudinal aerodynamic characteristics of externally-blown, jet-augmented wing-flap combinations. A potential flow analysis was used to develop two models: a wing-flap lifting surface model and a high-bypass-ratio turbofan engine wake model. Use of these two models in sequence provides for calculation of the wing-flap load distribution including the influence of the engine wake. The method can accommodate multiple engines per wing panel and part-span flaps but is limited to the case where the flow and geometry of the configuration are symmetric about a vertical plane containing the wing root chord. Comparisons of predicted and measured lift and pitching moment on unswept and swept wings with one and two engines per panel and with various flap deflection angles indicate satisfactory prediction of lift and moment for flap deflections up to 30 to 40 degrees. At higher flap angles with and without power, the method begins to overpredict lift, due probably to the appearance of flow separation on the flaps

    Assessment of a wake vortex flight test program

    Get PDF
    A proposed flight test program to measure the characteristics of wake vortices behind a T-33 aircraft was investigated. A number of facets of the flight tests were examined to define the parameters to be measured, the anticipated vortex characteristics, the mutual interference between the probe aircraft and the wake, the response of certain instruments to be used in obtaining measurements, the effect of condensation on the wake vortices, and methods of data reduction. Recommendations made as a result of the investigation are presented

    Results of tests OA63 and IA29 on an 0.015 scale model of the space shuttle configuration 140 A/B in the NASA/ARC 6- by 6-foot transonic wind tunnel, volume 1

    Get PDF
    Tests were conducted in the NASA/ARC 6- by 6-foot transonic wind tunnel from September 12 to September 28, 1973 on an 0.015-scale model of the space shuttle configuration 140 A/B. Surface pressure data were obtained for the orbiter for both launch and entry configuration at Mach numbers from 0.6 to 2.0. The surface pressures were obtained in the vicinity of the cargo bay door hinge and parting lines, the side of the fuselage at the crew compartment and below the OMS pods at the aft compartment. Data were obtained at angles of attack and sideslip consistent with the expected divergencies along the nominal trajectory. These tests were first in a series of tests supporting the orbiter venting analysis. The series will include tests in three facilities covering a total Mach number range from 0.6 to 10.4
    corecore