1,059 research outputs found

    Imaging Modalities Relevant to Intracranial Pressure Assessment in Astronauts: A Case-Based Discussion

    Get PDF
    Introduction: Intracranial pressure (ICP) elevation has been inferred or documented in a number of space crewmembers. Recent advances in noninvasive imaging technology offer new possibilities for ICP assessment. Most International Space Station (ISS) partner agencies have adopted a battery of occupational health monitoring tests including magnetic resonance imaging (MRI) pre- and postflight, and high-resolution sonography of the orbital structures in all mission phases including during flight. We hypothesize that joint consideration of data from the two techniques has the potential to improve quality and continuity of crewmember monitoring and care. Methods: Specially designed MRI and sonographic protocols were used to image eyes and optic nerves (ON) including the meningeal sheaths. Specific crewmembers multi-modality imaging data were analyzed to identify points of mutual validation as well as unique features of complementary nature. Results and Conclusion: Magnetic resonance imaging (MRI) and high-resolution sonography are both tomographic methods, however images obtained by the two modalities are based on different physical phenomena and use different acquisition principles. Consideration of the images acquired by these two modalities allows cross-validating findings related to the volume and fluid content of the ON subarachnoid space, shape of the globe, and other anatomical features of the orbit. Each of the imaging modalities also has unique advantages, making them complementary techniques

    Noninvasive Techniques for Intracranial Pressure Assessment: A Review from Aerospace Medicine Perspective

    Get PDF
    Microgravity-induced changes in fluid distribution and other physiological factors due to space flight have been implicated as the cause of increased intracranial pressure (ICP) in a number of space crewmembers. The modest levels of ICP elevation and absence of severe symptoms in this group do not warrant invasive diagnostic interventions. However, the long-term trends and residual or consequential changes secondary to the observed ICP elevation in this group are not yet known. Therefore, close attention is needed to evaluate the potential techniques of noninvasively assessing ICP, including those feasible for in-flight use. Of particular interest is continuity between ground and in-flight testing, whereby data from the same or different techniques allow reasonably dependable estimation of ICP trends and responses. Methods: A thorough review of current literature, analysis of NASA data, and interviews with subject matter experts were conducted to construct a presentation that reflects the state of the art for noninvasive ICP measurement and monitoring. Results: Multiple imaging and non-imaging modalities are available to assess ICP in terrestrial clinical and experimental environments. Imaging alternatives include magnetic resonance imaging (MRI) and high-resolution sonography. Non-imaging techniques include transcranial Doppler, certain audiological methods, and venous ophthalmodynamometry, among others. Special functional techniques have been proposed recently that allow the use of advanced MRI methods to calculate ICP in addition to the acquisition of high-resolution images. Our data include many of these applications, with several cases of correlation with lumbar puncture, the invasive "gold standard" measurement of ICP

    Experimental Evaluation of Russian Anode Layer Thrusters

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76973/1/AIAA-1994-3010-800.pd

    Mode Transitions in Hall Effect Thrusters

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106480/1/AIAA2013-4116.pd

    Topology of amorphous tetrahedral semiconductors on intermediate lengthscales

    Full text link
    Using the recently-proposed ``activation-relaxation technique'' for optimizing complex structures, we develop a structural model appropriate to a-GaAs which is almost free of odd-membered rings, i.e., wrong bonds, and possesses an almost perfect coordination of four. The model is found to be superior to structures obtained from much more computer-intensive tight-binding or quantum molecular-dynamics simulations. For the elemental system a-Si, where wrong bonds do not exist, the cost in elastic energy for removing odd-membered rings is such that the traditional continuous-random network is appropriate. Our study thus provides, for the first time, direct information on the nature of intermediate-range topology in amorphous tetrahedral semiconductors.Comment: 4 pages, Latex and 2 postscript figure

    Three-Dimensional FDTD Simulation of Biomaterial Exposure to Electromagnetic Nanopulses

    Full text link
    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, have been recently approved by the Federal Communications Commission for a number of various applications. They are also being explored for applications in biotechnology and medicine. The simulation of the propagation of a nanopulse through biological matter, previously performed using a two-dimensional finite difference-time domain method (FDTD), has been extended here into a full three-dimensional computation. To account for the UWB frequency range, a geometrical resolution of the exposed sample was 0.25mm0.25 mm, and the dielectric properties of biological matter were accurately described in terms of the Debye model. The results obtained from three-dimensional computation support the previously obtained results: the electromagnetic field inside a biological tissue depends on the incident pulse rise time and width, with increased importance of the rise time as the conductivity increases; no thermal effects are possible for the low pulse repetition rates, supported by recent experiments. New results show that the dielectric sample exposed to nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we obtained the dominant resonant frequency and the QQ-factor of the resonator.Comment: 15 pages, 8 figure
    • …
    corecore