2 research outputs found

    Major histocompatibility complex independent clonal T cell anergy by direct interaction of Staphylococcus aureus enterotoxin B with the T cell antigen receptor

    Full text link
    The Staphylococcal enterotoxin superantigens stimulate vigorous responses in T cells bearing certain T cell antigen receptor (TCR) V beta regions. In addition to activation, these superantigens also impart negative signals to T cells resulting in a profound state of unresponsiveness or anergy. The Staphylococcus aureus enterotoxins (SE) B and C2 bind to a closely related site on major histocompatibility complex (MHC) human leukocyte antigen (HLA)-DR1 molecules. Only SEB, however, interacts with the TCR V beta 3 region of HA1.7, a human HLA-DR1 restricted T cell clone specific for influenza haemagglutinin. In competition experiments, we demonstrated that the induction of anergy in HA1.7 by SEB is unaffected by the presence of SEC2. These results suggest that SEB-induced anergy is MHC independent and involves a direct interaction between the TCR and SEB. To resolve definitively whether SEB binds directly to T cells in the absence of MHC class II molecules, the cDNAs encoding the HA1.7 TCR were transfected into an MHC class II-negative human T cell line. The addition of SEB to these transfectants resulted in the downregulation of cell surface TCR expression, an increase in the concentration of intracellular calcium ions, the production of lymphokines, and reduced responsiveness to a subsequent challenge with SEB. We conclude that SEB interacts directly with the TCR in the absence of cointeraction with MHC class II molecules, and that this interaction may induce anergy in HA1.7

    ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle.

    No full text
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA-disseminated and implemented in over 70 countries globally-is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease
    corecore