3,243 research outputs found

    Laminar, Transitional, and Turbulent Heating on Mid Lift-to-Drag Ratio Entry Vehicles

    Get PDF
    The boundary-layer transition characteristics and convective aeroheating levels on mid lift-to-drag ratio entry vehicle configurations have been studied through wind-tunnel testing. Several configurations were investigated, including elliptically blunted cylinders with both circular and elliptically flattened cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically optimized analytic geometries. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry-vehicle geometries of previous Mars missions are insufficient. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Transition onset locations, both straight-line and cross-flow, and heating rates were obtained through global phosphor thermography. Supporting computations were performed to obtain heating rates for comparison with the data. Laminar data and predictions agreed to well within the experimental uncertainty. Fully turbulent data and predictions also agreed well. However, in transitional flow regions, greater differences were observed

    Rotational Evolution During Type I X-Ray Bursts

    Get PDF
    The rotation rates of six weakly-magnetic neutron stars accreting in low-mass X-ray binaries have most likely been measured by Type I X-ray burst observations with RXTE. The nearly coherent oscillations detected during the few seconds of thermonuclear burning are most simply understood as rotational modulation of brightness asymmetries on the neutron star surface. We show that, as suggested by Strohmayer and colleagues, the frequency changes of 1-2 Hz observed during bursts are consistent with angular momentum conservation as the burning shell hydrostatically expands and contracts. We calculate how vertical heat propagation through the radiative outer layers of the atmosphere and convection affect the coherence of the oscillation. We show that the evolution of the rotational profile depends strongly on whether the burning layers are composed of pure helium or mixed hydrogen/helium. Our results help explain the absence (presence) of oscillations from hydrogen-burning (helium-rich) bursts that was found by Muno and collaborators. We investigate angular momentum transport within the burning layers and the recoupling of the burning layers with the star. We show that the Kelvin-Helmholtz instability is quenched by the strong stratification, and that mixing between the burning fuel and underlying ashes by the baroclinic instability does not occur. However, the baroclinic instability may have time to operate within the differentially rotating burning layer, potentially bringing it into rigid rotation.Comment: To appear in The Astrophysical Journal; minor corrections made to tables and figure

    Biochemical Characterization of a Filtered Synaptoneurosome Preparation from Guinea Pig Cerebral Cortex: Cyclic Adenosine 3’:5’-Monophosphate-generating Systems, Receptors, and Enzymes

    Get PDF
    A particulate preparation was obtained by low speed centrifugation of guinea pig cerebral cortical homogenates prepared with a Krebs-Henseleit buffer. Light microscopic examination, using a reflected light differential interference contrast system, reveals the presence of intact neurons, axonal fragments, glial cells, and erythrocytes along with an abundance of small spherical entities (diameter about 1.1 μm) and snowman-shaped entities (diameter of larger sphere about 1.1 μm, diameter of attached smaller sphere about 0.6 μm). Many unattached smaller spherical entities are also present (diameter about 0.6 μm). Pressure filtration through 5 or l0-μm Millipore filters, followed by low speed centrifugation and resuspension, removes most of the larger entities to afford a suspension composed mainly of the small spherical and snowman-shaped entities. Electron microscopic examination reveals the presence of many synaptosomes with attached resealed postsynaptic entities. It is proposed that these correspond to the snowman-shaped entities to be termed synaptoneurosomes. Accumulations of cyclic AMP elicited by 2-chloroadenosine and histamine, and by combinations of 2-chloroadenosine, histamine, norepinephrine, and forskolin, are lower in filtered than in unfiltered preparations, whereas accumulations elicited by forskolin are unchanged. Levels of adenylate cyclase are reduced by filtration, whereas levels of phosphodiesterase are unchanged. Filtration reduces levels of markers for whole cells and endothelial cells, whereas neuronal markers such as acetylcholinesterase activity and norepinephrine uptake are increased. Levels of S-100 protein, a marker for glial cells, are not significantly decreased. There is no apparent change in the density of many receptors or ion channels. Levels of A1-adenosine and H1-histamine receptors are increased, whereas levels of so-called peripheral benzodiazepine-binding sites are decreased

    Experimental Aeroheating Study of Mid-L/D Entry Vehicle Geometries: NASA LaRC 20-Inch Mach 6 Air Tunnel Test 6966

    Get PDF
    Aeroheating data on mid lift-to-drag ratio entry vehicle configurations has been obtained through hypersonic wind tunnel testing. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry vehicle geometries of previous Mars missions are insufficient. Several configurations were investigated, including elliptically-blunted cylinders with both circular and elliptical cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically-optimized analytic geometries. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Global aeroheating data were obtained using phosphor thermography. Both stream-wise and cross-flow transition occured on different configurations. Comparisons were made with laminar and turbulent computational predictions generated with an algebraic turbulence model. Predictions were generally in good agreement in regions of laminar or fully-turbulent flow; however for transitional cases, the lack of a transition onset prediction capability produced less accurate comparisons. The data obtained in this study are intended to be used for prelimary mission design studies and the development and validation of computational methods

    Dystrophin glycoprotein complex dysfunction:a regulatory link between muscular dystrophy and cancer cachexia

    Get PDF
    SummaryCachexia contributes to nearly a third of all cancer deaths, yet the mechanisms underlying skeletal muscle wasting in this syndrome remain poorly defined. We report that tumor-induced alterations in the muscular dystrophy-associated dystrophin glycoprotein complex (DGC) represent a key early event in cachexia. Muscles from tumor-bearing mice exhibited membrane abnormalities accompanied by reduced levels of dystrophin and increased glycosylation on DGC proteins. Wasting was accentuated in tumor mdx mice lacking a DGC but spared in dystrophin transgenic mice that blocked induction of muscle E3 ubiquitin ligases. Furthermore, DGC deregulation correlated positively with cachexia in patients with gastrointestinal cancers. Based on these results, we propose that, similar to muscular dystrophy, DGC dysfunction plays a critical role in cancer-induced wasting

    Plasmonic Band-Pass Microfilters for LWIR Absorption Spectroscopy

    Get PDF
    Absorption spectroscopy in the long wave infrared provides an effective method for identification of various hazardous chemicals. We present a theoretical design for plasmonic band-pass filters that can be used to provide wavelength selectivity for uncooled microbolometer sensors. The microfilters consist of a pair of input reflection gratings that couple light into a plasmonic waveguide with a central resonant waveguide cavity. An output transmission grating on the other side of the structure pulls light out of the waveguide where it is detected by a closely spaced sensor. Fabrication of the filters can be performed using standard photolithography procedures. A spectral bandpass with a full-width at half-maximum (FWHM) of 100 nm can be obtained with a center wavelength spanning the entire 8–12 μm atmospheric transmission window by simple geometric scaling of only the lateral dimensions. This allows the simultaneous fabrication of all the wavelength filters needed for a full spectrometer on a chip
    • …
    corecore