68 research outputs found

    Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    Get PDF
    Brain–computer interfaces (BCI) (also referred to as brain–machine interfaces; BMI) are, by definition, an interface between the human brain and a technological application. Brain activity for interpretation by the BCI can be acquired with either invasive or non-invasive methods. The key point is that the signals that are interpreted come directly from the brain, bypassing sensorimotor output channels that may or may not have impaired function. This paper provides a concise glimpse of the breadth of BCI research and development topics covered by the workshops of the 6th International Brain–Computer Interface Meeting

    Hormones in perinatal rat and spiny mouse: relation to altricial and precocial timing of birth

    No full text
    Rat (Rattus norvegicus) and spiny mouse (Acomys cahirinus) are closely related murine species that, due to their altricial (rat) and precocial (spiny mouse) modes of development, differ in the developmental timing of birth. A comparison between the developmental profiles of plasma glucagon, insulin, thyroxine, triiodothyronine, and glucocorticosteroid hormone was carried out to elucidate the question to what extent these hormonal profiles were related to the timing of birth. Although corticosterone is the major circulating glucocorticosteroid in rat, only cortisol was found in the spiny mouse. The onset of increases in glucocorticosteroid and thyroid hormone levels occurred at the same developmental time points in both species. A neonatal increase in triiodothyronine levels was observed in the spiny mouse only. In both species the immediate perinatal period was characterized by decreases in the ratio of insulin and glucagon levels and the level of glucocorticosteroids. The observed developmental patterns of hormonal levels were found to be consistent with the observed developmental pattern of enzymic maturation in the respiratory and gastrointestinal tract, which play a critical role in the adaptation to the extrauterine environmen

    Impact of Reduced Lignin on Plant Fitness

    Get PDF
    Lignin content of crop plants has been reduced by traditional plant breeding, natural and induced mutations, and insertion of transgenes. The effects of these genes and associated lower lignin content have been examined in terms of agricultural fitness or with regard to economically harvestable yields of useful plant products, or, in the case of some perennial species, survivability over multiple years. In general, crop yields are depressed by significant reductions in lignin content. Other negative effects observed in plants with lowered lignin contents include lodging and reduction of long-term survival of some perennial species. However, the interactions of genes involved in lignin metabolism with genetic background and the environment in which the low- lignin crop is cultivated are substantial. Examples are provided that demonstrate that lignin can be reduced in specific lines or populations without damaging fitness. It is concluded that it will be essential to incorporate lignin reducing genes into numerous genetic backgrounds and combinations, and evaluate the resulting lines in diverse environments, to discover optimal combinations and to obtain a true measure of value and fitness in agricultural systems
    • …
    corecore