57,921 research outputs found

    The impact of circulation control on rotary aircraft controls systems

    Get PDF
    Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained

    Generalized Quantum Hall Projection Hamiltonians

    Full text link
    Certain well known quantum Hall states -- including the Laughlin states, the Moore-Read Pfaffian, and the Read-Rezayi Parafermion states -- can be defined as the unique lowest degree symmetric analytic function that vanishes as at least p powers as some number (g+1) of particles approach the same point. Analogously, these same quantum Hall states can be generated as the exact highest density zero energy state of simple angular momentum projection operators. Following this theme we determine the highest density zero energy state for many other values of p and g.Comment: 9 page

    Optical response of high-TcT_c cuprates: possible role of scattering rate saturation and in-plane anisotropy

    Full text link
    We present a generalized Drude analysis of the in-plane optical conductivity σab\sigma_{ab}(TT,ω\omega) in cuprates taking into account the effects of in-plane anisotropy. A simple ansatz for the scattering rate Γ\Gamma(TT,ω\omega), that includes anisotropy, a quadratic frequency dependence and saturation at the Mott-Ioffe-Regel limit, is able to reproduce recent normal state data on an optimally doped cuprate over a wide frequency range. We highlight the potential importance of including anisotropy in the full expression for σab\sigma_{ab}(TT,ω\omega) and challenge previous determinations of Γ\Gamma(ω\omega) in which anisotropy was neglected and Γ\Gamma(ω\omega) was indicated to be strictly linear in frequency over a wide frequency range. Possible implications of our findings for understanding thermodynamic properties and self-energy effects in high-TcT_c cuprates will also be discussed.Comment: 8 pages, 7 figures. To be published in Physical Review

    Incompressible liquid state of rapidly-rotating bosons at filling factor 3/2

    Full text link
    Bosons in the lowest Landau level, such as rapidly-rotating cold trapped atoms, are investigated numerically in the specially interesting case in which the filling factor (ratio of particle number to vortex number) is 3/2. When a moderate amount of a longer-range (e.g. dipolar) interaction is included, we find clear evidence that the ground state is in a phase constructed earlier by two of us, in which excitations possess non-Abelian statistics.Comment: 5 pages, 5 figure

    Spin 1 inversion: a Majorana tensor force for deuteron alpha scattering

    Get PDF
    We demonstrate, for the first time, successful S-matrix to potential inversion for spin one projectiles with non-diagonal Sll′jS^j_{ll'} yielding a TRT_{\rm R} interaction. The method is a generalization of the iterative-perturbative, IP, method. We present a test case indicating the degree of uniqueness of the potential. The method is adapted, using established procedures, into direct observable to potential inversion, fitting σ\sigma, iT11{\rm i}T_{11}, T20T_{20}, T21T_{21} and T22T_{22} for d + alpha scattering over a range of energies near 10 MeV. The TRT_{\rm R} interaction which we find is very different from that proposed elsewhere, both real and imaginary parts being very different for odd and even parity channels.Comment: 7 pages Revtex, 4 ps figure

    A nu=2/5 Paired Wavefunction

    Full text link
    We construct a wavefunction, generalizing the well known Moore-Read Pfaffian, that describes spinless electrons at filling fraction nu=2/5 (or bosons at filling fraction nu=2/3) as the ground state of a very simple three body potential. We find, analogous to the Pfaffian, that when quasiholes are added there is a ground state degeneracy which can be identified as zero-modes of the quasiholes. The zero-modes are identified as having semionic statistics. We write this wavefunction as a correlator of the Virasoro minimal model conformal field theory M(5,3). Since this model is non-unitary, we conclude that this wavefunction is a quantum critical state. Nonetheless, we find that the overlaps of this wavefunction with exact diagonalizations in the lowest and first excited Landau level are very high, suggesting that this wavefunction may have experimental relevance for some transition that may occur in that regime.Comment: 13 pages, 2 figure
    • …
    corecore