304 research outputs found
Complex singularities and PDEs
In this paper we give a review on the computational methods used to
characterize the complex singularities developed by some relevant PDEs. We
begin by reviewing the singularity tracking method based on the analysis of the
Fourier spectrum. We then introduce other methods generally used to detect the
hidden singularities. In particular we show some applications of the Pad\'e
approximation, of the Kida method, and of Borel-Polya method. We apply these
techniques to the study of the singularity formation of some nonlinear
dispersive and dissipative one dimensional PDE of the 2D Prandtl equation, of
the 2D KP equation, and to Navier-Stokes equation for high Reynolds number
incompressible flows in the case of interaction with rigid boundaries
Level Set Approach to Reversible Epitaxial Growth
We generalize the level set approach to model epitaxial growth to include
thermal detachment of atoms from island edges. This means that islands do not
always grow and island dissociation can occur. We make no assumptions about a
critical nucleus. Excellent quantitative agreement is obtained with kinetic
Monte Carlo simulations for island densities and island size distributions in
the submonolayer regime.Comment: 7 pages, 9 figure
Motion of a vortex sheet on a sphere with pole vortices
We cons i der the motion of a vortex sheet on the surface of a unit sphere in the presence of point vortices xed on north and south poles.Analytic and numerical research revealed that a vortex sheet in two-dimensional space has the following three properties.First,the vortex sheet is linearly unstable due to Kelvin-Helmholtz instability.Second,the curvature of the vortex sheet diverges in nite time.Last,the vortex sheet evolves into a rolling-up doubly branched spiral,when the equation of motion is regularized by the vortex method.The purpose of this article is to investigate how the curvature of the sphere and the presence of the pole vortices
Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition
In this paper, we consider the infinite-dimensional integration problem on
weighted reproducing kernel Hilbert spaces with norms induced by an underlying
function space decomposition of ANOVA-type. The weights model the relative
importance of different groups of variables. We present new randomized
multilevel algorithms to tackle this integration problem and prove upper bounds
for their randomized error. Furthermore, we provide in this setting the first
non-trivial lower error bounds for general randomized algorithms, which, in
particular, may be adaptive or non-linear. These lower bounds show that our
multilevel algorithms are optimal. Our analysis refines and extends the
analysis provided in [F. J. Hickernell, T. M\"uller-Gronbach, B. Niu, K.
Ritter, J. Complexity 26 (2010), 229-254], and our error bounds improve
substantially on the error bounds presented there. As an illustrative example,
we discuss the unanchored Sobolev space and employ randomized quasi-Monte Carlo
multilevel algorithms based on scrambled polynomial lattice rules.Comment: 31 pages, 0 figure
The elastic field of a surface step: The Marchenko–Parshin formula in the linear case
AbstractStrain has significance for both the growth characteristics and material properties of thin epitaxial films. In this work, the method of lattice statics is applied to an epitaxial system with cubic symmetry, using harmonic potentials. The energy density and force balance equations are written using a finite difference formalism that clearly shows their consistency with continuum elasticity. For simplicity, the atomic interactions are assumed to be maximally localized. For a layered material system with a material/vacuum interface and with surface steps, force balance equations are derived, and intrinsic surface stress at the material/vacuum interface is included by treating the atoms at the surface as having different elastic properties. By defining the strain relative to an appropriately chosen nonequilibrium lattice, as in the method of eigenstrains, analytic formulas in terms of microscopic parameters are found for the local force field near a step and for the macroscopic monopole and dipole moment forces due to a step. These results provide an atomistic validation of the Marchenko–Parshin formula for the dipole moment in terms of the elastic surface stress
- …