4,277 research outputs found

    Kilometric radiation power flux dependence on area of discrete aurora

    Get PDF
    Kilometer wavelength radiation, measured from distant positions over the North Pole and over the Earth's equator, was compared to the area of discrete aurora imaged by several low-altitude spacecraft. Through correlative studies of auroral kilometric radiation (AKR) with about two thousand auroral images, a stereoscopic view of the average auroral acceleration region was obtained. A major result is that the total AKR power increases as the area of the discrete auroral oval increases. The implications are that the regions of parallel potentials or the auroral plasma cavities, in which AKR is generated, must possess the following attributes: (1) they are shallow in altitude and their radial position depends on wavelength, (2) they thread flux tubes of small cross section, (3) the generation mechanism in them reaches a saturation limit rapidly, and (4) their distribution over the discrete auroral oval is nearly uniform. The above statistical results are true for large samples collected over a long period of time (about six months). In the short term, AKR frequently exhibits temporal variations with scales as short as three minutes (the resolution of the averaged data used). These fluctuations are explainable by rapid quenchings as well as fast starts of the electron cyclotron maser mechanism. There were times when AKR was present at substantial power levels while optical emissions were below instrument thresholds. A recent theoretical result may account for this set of observations by predicting that suprathermal electrons, of energies as low as several hundred eV, can generate second harmonic AKR. The indirect observations of second harmonic AKR require that these electrons have mirror points high above the atmosphere so as to minimize auroral light emissions. The results provide evidence supporting the electron cyclotron maser mechanism

    Absorption by CO2 between 5400 and 6600 cm-1 /1.6 micron region/

    Get PDF
    Spectrometric absorption studies of carbon dioxide in 1.6 micron regio

    The Phase Diagram of High Temperature QCD with Three Flavors of Improved Staggered Quarks

    Full text link
    We report on progress in our study of high temperature QCD with three flavors of improved staggered quarks. Simulations are being carried out with three degenerate quarks with masses less than or equal to the strange quark mass, msm_s, and with degenerate up and down quarks with masses in the range 0.1ms≤mu,d≤0.6ms0.1 m_s \leq m_{u,d}\leq 0.6 m_s, and the strange quark mass fixed near its physical value. For the quark masses studied to date we find rapid crossovers, which sharpen as the quark mass is reduced, rather than bona fide phase transitions.Comment: Lattice 2003 (Nonzero temperature and density

    Coupling Between An Optical Phonon and the Kondo Effect

    Full text link
    We explore the ultra-fast optical response of Yb_{14}MnSb_{11}, providing further evidence that this Zintl compound is the first ferromagnetic, under-screened Kondo lattice. These experiments also provide the first demonstration of coupling between an optical phonon mode and the Kondo effect.Comment: 4 Pages, 3 Figures, submitted to Phys. Rev. Let

    The equation of state with nonzero chemical potential for 2+1 flavors

    Get PDF
    We present results for the QCD equation of state with nonzero chemical potential using the Taylor expansion method with terms up to sixth order in the expansion. Our calculations are performed on asqtad 2+1 quark flavor lattices at Nt=4N_t=4.Comment: Talk given at the XXV International Symposium on Lattice Field Theory, July 30-4 August 2007, Regensburg, German

    The QCD equation of state with asqtad staggered fermions

    Get PDF
    We report on our result for the equation of state (EOS) with a Symanzik improved gauge action and the asqtad improved staggered fermion action at Nt=4N_t=4 and 6. In our dynamical simulations with 2+1 flavors we use the inexact R algorithm and here we estimate the finite step-size systematic error on the EOS. Finally we discuss the non-zero chemical potential extension of the EOS and give some preliminary results.Comment: 7 pages, 6 figures, presented at Lattice2006(High Temperature and Density), to appear in Proceedings of Scienc
    • …
    corecore