1,012 research outputs found

    Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys from first principles

    Full text link
    We present results of an extensive set of first-principles density functional theory calculations of point defect formation, binding and clustering energies in austenitic Fe with dilute concentrations of Cr and Ni solutes.Comment: 24 pages, 10 figures, published in Phys. Rev.

    Advances in our clinical understanding of autonomic regulation therapy using vagal nerve stimulation in patients living with heart failure

    Get PDF
    The ANTHEM-HF, INOVATE-HF, and NECTAR-HF clinical studies of autonomic regulation therapy (ART) using vagus nerve stimulation (VNS) systems have collectively provided dose-ranging information enabling the development of several working hypotheses on how stimulation frequency can be utilized during VNS for tolerability and improving cardiovascular outcomes in patients living with heart failure (HF) and reduced ejection fraction (HFrEF). Changes in heart rate dynamics, comprising reduced heart rate (HR) and increased HR variability, are a biomarker of autonomic nerve system engagement and cardiac control, and appear to be sensitive to VNS that is delivered using a stimulation frequency that is similar to the natural operating frequency of the vagus nerve. Among prior studies, the ANTHEM-HF Pilot Study has provided the clearest evidence of autonomic engagement with VNS that was delivered using a stimulation frequency that was within the operating range of the vagus nerve. Achieving autonomic engagement was accompanied by improvement from baseline in six-minute walk duration (6MWD), health-related quality of life, and left ventricular EF (LVEF), over and above those achieved by concomitant guideline-directed medical therapy (GDMT) administered to counteract harmful neurohormonal activation, with relative freedom from deleterious effects. Autonomic engagement and positive directional changes have persisted over time, and an exploratory analysis suggests that improvement in autonomic tone, symptoms, and physical capacity may be independent of baseline NT-proBNP values. Based upon these encouraging observations, prospective, randomized controlled trials examining the effects on symptoms and cardiac function as well as natural history have been warranted. A multi-national, large-scale, randomized, controlled trial is well underway to determine the outcomes associated with ART using autonomic nervous system engagement as a guide for VNS delivery

    Comparison of symptomatic and functional responses to vagus nerve stimulation in ANTHEM-HF, INOVATE-HF, and NECTAR-HF

    Get PDF
    AIMS: Clinical studies of vagal nerve stimulation (VNS) for heart failure with reduced ejection fraction have had mixed results to date. We sought to compare VNS delivery and associated changes in symptoms and function in autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure (ANTHEM-HF), increase of vagal tone in heart failure (INOVATE-HF), and neural cardiac therapy for heart failure (NECTAR-HF) for hypothesis generation. METHODS AND RESULTS: Descriptive statistics were used to analyse data from the public domain for differences in proportions using Pearson\u27s chi-square test, differences in mean values using Student\u27s unpaired t-test, and differences in changes of mean values using two-sample t-tests. Guideline-directed medical therapy recommendations were similar across studies. Fewer patients were in New York Heart Association 3, and baseline heart rate (HR) was higher in ANTHEM-HF. In INOVATE-HF, VNS was aimed at peripheral neural targets, using closed-loop delivery that required synchronization of VNS to R-wave sensing by an intracardiac lead. Pulse frequency was low (1-2 Hz) because of a timing schedule allowing ≤3 pulses of VNS following at most 25% of detected R waves. NECTAR-HF and ANTHEM-HF used open-loop VNS delivery (i.e. independent of any external signal) aimed at both central and peripheral targets. In NECTAR-HF, VNS delivery at 20 Hz caused off-target effects that limited VNS up-titration in a majority of patients. In ANTHEM-HF, VNS delivery at 10 Hz allowed up-titration until changes in HR dynamics were confirmed. Six months after VNS titration, significant improvements in both HR and HR variability occurred only in ANTHEM-HF. When ANTHEM-HF and NECTAR-HF were compared, greater improvements from baseline were observed in ANTHEM-HF in standard deviation in normal-to-normal R-R intervals (94 ± 26 to 111 ± 50 vs. 146 ± 48 to 130 ± 52 ms; P \u3c 0.001), left ventricular ejection fraction (32 ± 7 to 37 ± 0.4 vs. 31 ± 6 to 33 ± 6; P \u3c 0.05), and Minnesota Living with Heart Failure mean score (40 ± 14 to 21 ± 10 vs. 44 ± 22 to 36 ± 21; P \u3c 0.002). When compared with INOVATE-HF, greater improvement in 6-min walk distance was observed in ANTHEM-HF (287 ± 66 to 346 ± 78 vs. 304 ± 111 to 334 ± 111 m; P \u3c 0.04). CONCLUSIONS: In this post-hoc analysis, differences in patient demographics were seen and may have caused the differential responses in symptoms and function observed in association with VNS. Major differences in technology platforms, neural targets, VNS delivery, and HR and HR variability responses could have also potentially played a very important role. Further study is underway in a randomized controlled trial with these considerations in mind

    The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    Get PDF
    Many cases of non-standard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The gain represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The loss represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is Codon Disappearance, where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the Unassigned Codon mechanism, the loss occurs first, whereas in the Ambiguous Intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. Codon disappearance is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense to sense reassignments cannot be explained by codon disappearance. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the Unassigned Codon and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary information). To appear in J.Mol.Evo

    An iterative strategy combining biophysical criteria and duration hidden Markov models for structural predictions of Chlamydia trachomatis σ66 promoters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Promoter identification is a first step in the quest to explain gene regulation in bacteria. It has been demonstrated that the initiation of bacterial transcription depends upon the stability and topology of DNA in the promoter region as well as the binding affinity between the RNA polymerase σ-factor and promoter. However, promoter prediction algorithms to date have not explicitly used an ensemble of these factors as predictors. In addition, most promoter models have been trained on data from <it>Escherichia coli</it>. Although it has been shown that transcriptional mechanisms are similar among various bacteria, it is quite possible that the differences between <it>Escherichia coli </it>and <it>Chlamydia trachomatis </it>are large enough to recommend an organism-specific modeling effort.</p> <p>Results</p> <p>Here we present an iterative stochastic model building procedure that combines such biophysical metrics as DNA stability, curvature, twist and stress-induced DNA duplex destabilization along with duration hidden Markov model parameters to model <it>Chlamydia trachomatis </it>σ<sup>66 </sup>promoters from 29 experimentally verified sequences. Initially, iterative duration hidden Markov modeling of the training set sequences provides a scoring algorithm for <it>Chlamydia trachomatis </it>RNA polymerase σ<sup>66</sup>/DNA binding. Subsequently, an iterative application of Stepwise Binary Logistic Regression selects multiple promoter predictors and deletes/replaces training set sequences to determine an optimal training set. The resulting model predicts the final training set with a high degree of accuracy and provides insights into the structure of the promoter region. Model based genome-wide predictions are provided so that optimal promoter candidates can be experimentally evaluated, and refined models developed. Co-predictions with three other algorithms are also supplied to enhance reliability.</p> <p>Conclusion</p> <p>This strategy and resulting model support the conjecture that DNA biophysical properties, along with RNA polymerase σ-factor/DNA binding collaboratively, contribute to a sequence's ability to promote transcription. This work provides a baseline model that can evolve as new <it>Chlamydia trachomatis </it>σ<sup>66 </sup>promoters are identified with assistance from the provided genome-wide predictions. The proposed methodology is ideal for organisms with few identified promoters and relatively small genomes.</p

    Thinking the unthinkable: Imagining an ‘un-American,’ Girl-friendly, Women- and Trans-Inclusive Alternative for Baseball

    Get PDF
    The purpose of this article is twofold: to capture the injustice inherent in the gendered bifurcation of baseball and softball via the prism of critical feminist sport studies; and to begin to imagine a girl-friendly/women-and trans-inclusive future for baseball that is less fertile for cooptation into post-911 United States security state discourses. In this article I link the "unthinkability" of the occupational segregation of baseball in North America to the dominance of the ideology of the two sex system and European disasporic morality. To illustrate the extent of this occupational segregation via the gendered bifurcation of baseball and softball, I draw on feminist sport studies to examine the exemplars or "texts" of three Canadian brother/sister baseball softball duos: Jason Bay and Lauren Bay Regula; Brett and Danielle Lawrie; and Mathew and Katie Reyes

    Effect of Correlated tRNA Abundances on Translation Errors and Evolution of Codon Usage Bias

    Get PDF
    Despite the fact that tRNA abundances are thought to play a major role in determining translation error rates, their distribution across the genetic code and the resulting implications have received little attention. In general, studies of codon usage bias (CUB) assume that codons with higher tRNA abundance have lower missense error rates. Using a model of protein translation based on tRNA competition and intra-ribosomal kinetics, we show that this assumption can be violated when tRNA abundances are positively correlated across the genetic code. Examining the distribution of tRNA abundances across 73 bacterial genomes from 20 different genera, we find a consistent positive correlation between tRNA abundances across the genetic code. This work challenges one of the fundamental assumptions made in over 30 years of research on CUB that codons with higher tRNA abundances have lower missense error rates and that missense errors are the primary selective force responsible for CUB
    corecore