244,553 research outputs found

    Spontaneous Scale Symmetry Breaking in 2+1-Dimensional QED at Both Zero and Finite Temperature

    Get PDF
    A complete analysis of dynamical scale symmetry breaking in 2+1-dimensional QED at both zero and finite temperature is presented by looking at solutions to the Schwinger-Dyson equation. In different kinetic energy regimes we use various numerical and analytic techniques (including an expansion in large flavour number). It is confirmed that, contrary to the case of 3+1 dimensions, there is no dynamical scale symmetry breaking at zero temperature, despite the fact that chiral symmetry breaking can occur dynamically. At finite temperature, such breaking of scale symmetry may take place.Comment: 12 pages, no figures, uses RevTeX4-bet

    More Toda-like (0,2) mirrors

    Full text link
    In this paper, we extend our previous work to construct (0,2) Toda-like mirrors to A/2-twisted theories on more general spaces, as part of a program of understanding (0,2) mirror symmetry. Specifically, we propose (0,2) mirrors to GLSMs on toric del Pezzo surfaces and Hirzebruch surfaces with deformations of the tangent bundle. We check the results by comparing correlation functions, global symmetries, as well as geometric blowdowns with the corresponding (0,2) Toda-like mirrors. We also briefly discuss Grassmannian manifolds.Comment: 49 pages, LaTeX; v2: references adde

    Modeling human behavior in user-adaptive systems: recent advances using soft computing techniques

    Get PDF
    Adaptive Hypermedia systems are becoming more important in our everyday activities and users are expecting more intelligent services from them. The key element of a generic adaptive hypermedia system is the user model. Traditional machine learning techniques used to create user models are usually too rigid to capture the inherent uncertainty of human behavior. In this context, soft computing techniques can be used to handle and process human uncertainty and to simulate human decision-making. This paper examines how soft computing techniques, including fuzzy logic, neural networks, genetic algorithms, fuzzy clustering and neuro-fuzzy systems, have been used, alone or in combination with other machine learning techniques, for user modeling from 1999 to 2004. For each technique, its main applications, limitations and future directions for user modeling are presented. The paper also presents guidelines that show which soft computing techniques should be used according to the task implemented by the application

    Improved decision support for engine-in-the-loop experimental design optimization

    Get PDF
    Experimental optimization with hardware in the loop is a common procedure in engineering and has been the subject of intense development, particularly when it is applied to relatively complex combinatorial systems that are not completely understood, or where accurate modelling is not possible owing to the dimensions of the search space. A common source of difficulty arises because of the level of noise associated with experimental measurements, a combination of limited instrument precision, and extraneous factors. When a series of experiments is conducted to search for a combination of input parameters that results in a minimum or maximum response, under the imposition of noise, the underlying shape of the function being optimized can become very difficult to discern or even lost. A common methodology to support experimental search for optimal or suboptimal values is to use one of the many gradient descent methods. However, even sophisticated and proven methodologies, such as simulated annealing, can be significantly challenged in the presence of noise, since approximating the gradient at any point becomes highly unreliable. Often, experiments are accepted as a result of random noise which should be rejected, and vice versa. This is also true for other sampling techniques, including tabu and evolutionary algorithms. After the general introduction, this paper is divided into two main sections (sections 2 and 3), which are followed by the conclusion. Section 2 introduces a decision support methodology based upon response surfaces, which supplements experimental management based on a variable neighbourhood search and is shown to be highly effective in directing experiments in the presence of a significant signal-to-noise ratio and complex combinatorial functions. The methodology is developed on a three-dimensional surface with multiple local minima, a large basin of attraction, and a high signal-to-noise ratio. In section 2, the methodology is applied to an automotive combinatorial search in the laboratory, on a real-time engine-in-the-loop application. In this application, it is desired to find the maximum power output of an experimental single-cylinder spark ignition engine operating under a quasi-constant-volume operating regime. Under this regime, the piston is slowed at top dead centre to achieve combustion in close to constant volume conditions. As part of the further development of the engine to incorporate a linear generator to investigate free-piston operation, it is necessary to perform a series of experiments with combinatorial parameters. The objective is to identify the maximum power point in the least number of experiments in order to minimize costs. This test programme provides peak power data in order to achieve optimal electrical machine design. The decision support methodology is combined with standard optimization and search methods – namely gradient descent and simulated annealing – in order to study the reductions possible in experimental iterations. It is shown that the decision support methodology significantly reduces the number of experiments necessary to find the maximum power solution and thus offers a potentially significant cost saving to hardware-in-the-loop experi- mentation

    A Monte Carlo analysis of the liquid xenon TPC as gamma ray telescope

    Get PDF
    Extensive Monte Carlo modeling of a coded aperture x ray telescope based on a high resolution liquid xenon TPC has been performed. Results on efficiency, background reduction capability and source flux sensitivity are presented. We discuss in particular the development of a reconstruction algorithm for events with multiple interaction points. From the energy and spatial information, the kinematics of Compton scattering is used to identify and reduce background events, as well as to improve the detector response in the few MeV region. Assuming a spatial resolution of 1 mm RMS and an energy resolution of 4.5 percent FWHM at 1 MeV, the algorithm is capable of reducing by an order of magnitude the background rate expected at balloon altitude, thus significantly improving the telescope sensitivity

    Liquid xenon time projection chamber for gamma rays in the MeV region: Development status

    Get PDF
    The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap
    • …
    corecore