58 research outputs found

    Fluorescence visualization of a convective instability which modulates the spreading of volatile surface films

    Get PDF
    The spontaneous spreading of a thin liquid film along the surface of a deep liquid layer of higher surface tension is a ubiquitous process which provides rapid and efficient surface transport of organic or biological material. For a source of constant concentration, the leading edge of a nonvolatile, immiscible film driven to spread by gradients in surface tension is known to advance as t^3/4 in time. Recent experiments using laser shadowgraphy to detect the advancing front of spreading films indicate, however, that immiscible but volatile sources of constant concentration spread with a reduced exponent according to t^1/2. Using a novel technique whereby fluorescent lines are inscribed in water, we have detected the evolution of a thermal instability beneath the leading edge of volatile films which strongly resembles a Rayleigh-Bénard roll. We propose that the increased dissipation from this rotational flow structure is likely responsible for the reduction in spreading exponent. This observation suggests a conceptual framework for coupling the effects of evaporation to the dynamics of spreading

    Late stage kinetics for various wicking and spreading problems

    Full text link
    The kinetics of spreading of a liquid drop in a wedge or V-shaped groove, in a network of such grooves, and on a hydrophilic strip, is re-examined. The length of a droplet of volume Omega spreading in a wedge after a time t is predicted to scale as Omega^(1/5) * t^(2/5), and the height profile is predicted to be a parabola in the distance along the wedge. If the droplet is spreading radially in a sparse network of V-shaped grooves on a surface, the radius is predicted to scale as Omega^(1/6) * t^(1/3), provided the liquid is completely contained within the grooves. A number of other results are also obtained.Comment: 5 pages, 2 figures, RevTeX

    Network analysis of large-scale ImmGen and Tabula Muris datasets highlights metabolic diversity of tissue mononuclear phagocytes

    Get PDF
    The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1) an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of ImmGen Phase I dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) dataset (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identification of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages

    Open Source ImmGen: network perspective on metabolic diversity among mononuclear phagocytes

    Get PDF
    We dissect metabolic variability of mononuclear phagocyte (MNP) subpopulations across different tissues through integrative analysis of three large scale datasets. Specifically, we introduce ImmGen MNP Open Source dataset that profiled 337 samples and extended previous ImmGen effort which included 202 samples of mononuclear phagocytes and their progenitors. Next, we analysed Tabula Muris Senis dataset to extract data for 51,364 myeloid cells from 18 tissues. Taken together, a compendium of data assembled in this work covers phagocytic populations found across 38 different tissues. To analyse common metabolic features, we developed novel network-based computational approach for unbiased identification of key metabolic subnetworks based on cellular transcriptional profiles in large-scale datasets. Using ImmGen MNP Open Source dataset as baseline, we define 9 metabolic subnetworks that encapsulate the metabolic differences within mononuclear phagocytes, and demonstrate that these features are robustly found across all three datasets, including lipid metabolism, cholesterol biosynthesis, glycolysis, and a set of fatty acid related metabolic pathways, as well as nucleotide and folate metabolism. We systematically define major features specific to macrophage and dendritic cell subpopulations. Among other things, we find that cholesterol synthesis appears particularly active within the migratory dendritic cells. We demonstrate that interference with this pathway through statins administration diminishes migratory capacity of the dendritic cells in vivo. This result demonstrates the power of our approach and highlights importance of metabolic diversity among mononuclear phagocytes

    Nouvelles archéologiques

    No full text
    Dussaud René, Cumont Franz, Seyrig Henri, Cagnac R. Nouvelles archéologiques . In: Syria. Tome 17 fascicule 1, 1936. pp. 98-104

    Nouvelles archéologiques

    No full text
    Dussaud René, Cumont Franz, Seyrig Henri, Cagnac R. Nouvelles archéologiques . In: Syria. Tome 17 fascicule 1, 1936. pp. 98-104
    corecore