1,705 research outputs found
Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook
Two-dimensional (2D) semiconductors provide a unique opportunity for
optoelectronics due to their layered atomic structure, electronic and optical
properties. To date, a majority of the application-oriented research in this
field has been focused on field-effect electronics as well as photodetectors
and light emitting diodes. Here we present a perspective on the use of 2D
semiconductors for photovoltaic applications. We discuss photonic device
designs that enable light trapping in nanometer-thickness absorber layers, and
we also outline schemes for efficient carrier transport and collection. We
further provide theoretical estimates of efficiency indicating that 2D
semiconductors can indeed be competitive with and complementary to conventional
photovoltaics, based on favorable energy bandgap, absorption, external
radiative efficiency, along with recent experimental demonstrations. Photonic
and electronic design of 2D semiconductor photovoltaics represents a new
direction for realizing ultrathin, efficient solar cells with applications
ranging from conventional power generation to portable and ultralight solar
power.Comment: 4 figure
High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures
We report experimental measurements for ultrathin (< 15 nm) van der Waals
heterostructures exhibiting external quantum efficiencies exceeding 50%, and
show that these structures can achieve experimental absorbance > 90%. By
coupling electromagnetic simulations and experimental measurements, we show
that pn WSe2/MoS2 heterojunctions with vertical carrier collection can have
internal photocarrier collection efficiencies exceeding 70%.Comment: ACS Nano, 2017. Manuscript (25 pages, 7 figures) plus supporting
information (7 pages, 4 figures
Channel saturation and conductance quantization in single-atom gold constrictions
Notwithstanding the discreteness of metallic constrictions, it is shown that
the finite elasticity of stable, single-atom gold constrictions allows for a
continuous and reversible change in conductance, thereby enabling observation
of channel saturation and conductance quantization. The observed channel
saturation and signature for conductance quantization is achieved by
superposition of atomic/subatomic-scale oscillations on a
retracting/approaching gold tip against a gold substrate of a scanning probe.
Results also show that conductance histograms are neither suitable for
evaluating the stability of atomic configurations through peak positions or
peak height nor appropriate for assessing conductance quantization. A large
number of atomic configurations with similar conductance values give rise to
peaks in the conductance histogram. The positions of the peaks and counts at
each peak can be varied by changing the conditions under which the histograms
are made. Histogram counts below 1Go cannot necessarily be assumed to arise
from single-atom constrictions
Electrical Control of Linear Dichroism in Black Phosphorus from the Visible to Mid-Infrared
The incorporation of electrically tunable materials into photonic structures
such as waveguides and metasurfaces enables dynamic control of light
propagation by an applied potential. While many materials have been shown to
exhibit electrically tunable permittivity and dispersion, including transparent
conducting oxides (TCOs) and III-V semiconductors and quantum wells, these
materials are all optically isotropic in the propagation plane. In this work,
we report the first known example of electrically tunable linear dichroism,
observed here in few-layer black phosphorus (BP), which is a promising
candidate for multi-functional, broadband, tunable photonic elements. We
measure active modulation of the linear dichroism from the mid-infrared to
visible frequency range, which is driven by anisotropic quantum-confined Stark
and Burstein-Moss effects, and field-induced forbidden-to-allowed optical
transitions. Moreover, we observe high BP absorption modulation strengths,
approaching unity for certain thicknesses and photon energies
- …
