23 research outputs found

    Search for a coupling scheme in heavy deformed nuclei: The pseudo SU(3) model

    Get PDF
    To test the possible usefulness of the pseudo SU(3) coupling scheme a few nuclear properties are examined which can be expected to be governed largely by the (1g2d2d3s) part of the proton configuration for odd-Z nuclei and the (1h2f2f3p3p) part of the neutron configuration for odd-N nuclei. The equivalence between these configurations and pseudo oscillator shells (ffpp) and (gg natural-parity rotational bands in deformed nuclei can be described approximately by many-particle states which are coupled to leading pseudo SU(3) representation (maximum possible value of 2gl + gm) of these configurations. The simple model in which the natural-parity part of the proton and neutron configurations are coupled to leading pseudo SU(3) representation predicts ground state magnetic moments in remarkably good agreement with experiment. The strong hindrance factors observed in certain interband M1 transition probabilities are, however, not predicted by this model. The diagonalization of a simple effective interaction within the leading pseudo SU(3) representation leads to spectra with the experimentally observed ordering of the K-bands. (The case of the Eu and Tm isotopes has been examined in some detail since these are expected to have leading pseudo SU(3) representations with the same quantum numbers (glgm) but with quite different ordering of the K-bands.)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33920/1/0000186.pd

    Violation of pseudospin symmetry in nucleon-nucleus scattering: exact relations

    Get PDF
    An exact determination of the size of the pseudospin symmetry violating part of the nucleon-nucleus scattering amplitude from scattering observables is presented. The approximation recently used by Ginocchio turns out to underestimate the violation of pseudospin symmetry. Nevertheless the conclusion of a modestly broken pseudospin symmetry in proton-208Pb scattering at EL=800MeV remains valid.Comment: 8 pages, 2 figure

    Relativistic Mean Field Approach and the Pseudo-Spin Symmetry

    Get PDF
    Based on the Relativistic Mean Field (RMF) approach the existence of the broken pseudo-spin symmetry is investigated. Both spherical RMF and constrained deformed RMF calculations are carried out employing realistic Lagrangian parameters for spherical and for deformed sample nuclei. The quasi - degenerate pseudo-spin doublets are confirmed to exist near the fermi surface for both spherical and deformed nuclei.Comment: 9 pages RevTex, 4 p.s figures, to appear in Phys. Rev. C as R.

    Inter-band B(E2) transition strengths in odd-mass heavy deformed nuclei

    Get PDF
    Inter-band B(E2) transition strengths between different normal parity bands in 163Dy and 165Er are described using the pseudo-SU(3) model. The Hamiltonian includes Nilsson single-particle energies, quadrupole-quadrupole and pairing interactions with fixed, parametrized strengths, and three extra rotor terms used to fine tune the energy spectra. In addition to inter-band transitions, the energy spectra and the ground state intra-band B(E2) strengths are reported. The results show the pseudo-SU(3) shell model to be a powerful microscopic theory for a description of the normal parity sector in heavy deformed odd-A nuclei.Comment: 4 figures, 2 table

    The pseudo-spin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line

    Get PDF
    Based on the Relativistic continuum Hartree-Bogoliubov (RCHB) theory, the pseudo-spin approximation in exotic nuclei is investigated in Zr and Sn isotopes from the proton drip line to the neutron drip line. The quality of the pseudo-spin approximation is shown to be connected with the competition between the centrifugal barrier (CB) and the pseudo-spin orbital potential (PSOP). The PSOP depends on the derivative of the difference between the scalar and vector potentials dV/drdV/dr. If dV/dr=0dV/dr = 0, the pseudo-spin symmetry is exact. The pseudo-spin symmetry is found to be a good approximation for normal nuclei and to become much better for exotic nuclei with highly diffuse potential, which have dV/dr0dV/dr \sim 0. The energy splitting of the pseudo-spin partners is smaller for orbitals near the Fermi surface (even in the continuum) than the deeply bound orbitals. The lower components of the Dirac wave functions for the pseudo-spin partners are very similar and almost equal in magnitude.Comment: 22 pages, 9figure

    Shell model description of normal parity bands in odd-mass heavy deformed nuclei

    Get PDF
    The low-energy spectra and B(E2) electromagnetic transition strengths of 159Eu, 159Tb and 159Dy are described using the pseudo SU(3) model. Normal parity bands are built as linear combinations of SU(3) states, which are the direct product of SU(3) proton and neutron states with pseudo spin zero (for even number of nucleons) and pseudo spin 1/2 (for odd number of nucleons). Each of the many-particle states have a well-defined particle number and total angular momentum. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms which are diagonal in the SU(3) basis. The pseudo SU(3) model is shown to be a powerful tool to describe odd-mass heavy deformed nuclei.Comment: 11 pages, 2 figures, Accepted to be published in Phys. Rev.

    A Study of N=66 Even-A Nuclei

    No full text
    corecore