62 research outputs found

    Current Concepts and Future Directions of CELSS

    Get PDF
    Bioregenerative life support systems for use in space were studied. Concepts of such systems include the use of higher plants and/or microalgae as sources of food, potable water and oxygen, and as sinks for carbon dioxide and metabolic wastes. Recycling of materials within the system will require processing of food organism and crew wastes using microbiological and/or physical chemical techniques. The dynamics of material flow within the system will require monitoring, control, stabilization and maintenance imposed by computers. Studies included higher plant and algal physiology, environmental responses, and control; flight experiments for testing responses of organisms to weightlessness and increased radiation levels; and development of ground based facilities for the study of recycling within a bioregenerative life support system

    Summary of the proceedings of the Mars Surface Sample Return Symposium

    Get PDF
    A summary is made of various technical and scientific aspects of a Mars surface sample return mission. Particular attention was focused on the question of back contamination. Data are also given on problems inherent in the back contamination issue and return sample mission; areas where additional research is needed were pointed out. Quarantine procedures, safety measures, and sterilization effects on organic-inorganic data, and biological problems were also dealt with

    Speculations on the consequences to biology of space shuttle-associated increases in global UV-B radiation

    Get PDF
    Various aspects of the impact of ozone depletion on the biosphere are assessed and discussed. Speculations on the factors which determine the extent and nature of biological damage due to an increased flux of ultra violet light are presented. It is concluded that a complete assessment must consider both direct effects (organisms) as well as indirect effects (ecosystems). The role of computer simulation of ecosystem models as a predictive tool is examined

    Controlled ecological life support system - biological problems

    Get PDF
    The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate

    On the habitability of Mars: An approach to planetary ecosynthesis

    Get PDF
    The possibility of utilizing Mars as a habitat for terrestrial life, including man, is examined. Available data, assumptions, and speculations on the climate, physical state, and chemical inventory of Mars are reviewed and compared with the known requirements and environmental limits of terrestrial life. No fundamental, insuperable limitation of the ability of Mars to support a terrestrial ecology is identified. The lack of an oxygen-containing atmosphere would prevent the unaided habitation of Mars by man. The present strong ultraviolet surface irradiation is an additional major barrier. The creation of an adequate oxygen and ozone-containing atmosphere on Mars may be feasible through the use of photosynthetic organisms. The time needed to generate such an atmosphere, however, might be several millions of years. This period might be drastically reduced by the synthesis of novel, Mars-adapted, oxygen producing photosynthetic strains by techniques of genetic engineering, and modifying the present Martian climate by melting of the Martian polar caps and concomitant advective and greenhouse heating effects

    Space ecosynthesis: An approach to the design of closed ecosystems for use in space

    Get PDF
    The use of closed ecological systems for the regeneration of wastes, air, and water is discussed. It is concluded that such systems, if they are to be used for the support of humans in space, will require extensive mechanical and physico-chemical support. The reason for this is that the buffering capacity available in small systems is inadequate, and that natural biological and physical regulatory mechanisms rapidly become inoperative. It is proposed that mathematical models of the dynamics of a closed ecological system may provide the best means of studying the initial problems of ecosystem closure. A conceptual and mathematical model of a closed ecosystem is described which treats the biological components as a farm, calculates the rates of flow of elements through the system by mass-balance techniques and control theory postulates, and can evaluate the requirements for mechanical buffering activities. It is suggested that study of the closure of ecosystems can significantly aid in the establishment of general principles of ecological systems

    Controlled Ecological Life Support System. Life Support Systems in Space Travel

    Get PDF
    Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station

    Controlled Ecological Life Support Systems: CELSS 1985 Workshop

    Get PDF
    Various topics related to closed ecological systems are discussed. Space habitats, vegetative growth, photosynthesis, recycling, culture techniques, waste utilization bioreactors and controlled atmospheres on space stations are among the topics covered

    A review of recent activities in the NASA CELSS program

    Get PDF
    A CELSS (Controlled Ecological Life Support System) is a device that utilizes photosynthetic organisms and light energy to regenerate waste materials into oxygen and food for a crew in space. The results of studies with the CELSS program suggest that a bioregenerative life support system is a useful and effective method of regenerating consumable materials for crew sustenance. The data suggests that the operation of a CELSS in space is practical if plants can be made to behave predictably in the space environment. Much of the work centers on the biological components of the CELSS system. Ways of achieving high efficiency and long term stability of all components of the system are examined. Included are explorations of the conversion of nonedible cellulose to edible materials, nitrogen fixation by biological and chemical methods, and methods of waste processing. A description is provided of the extent to which a bioregenerative life support system can meet the constraints of the space environment, and the degree is assessed to which system efficiency and stability can be increased during the next decade

    Controlled Ecological Life Support System. First Principal Investigators Meeting

    Get PDF
    Control problems in autonomous life support systems, CELSS candidate species, maximum grain yield, plant growth, waste management, air pollution, and mineral separation are discussed
    • …
    corecore