9,211 research outputs found

    A Compact Fireball Model of Gamma Ray Bursts

    Get PDF
    It is proposed that the gamma ray burst photons near the peak of the spectrum at several hundred KeV are produced on very compact scales, where photon production is limited by blackbody effects and/or the requirement of energetic quanta (E>2mec2E>2m_e c^2) for efficient further production. The fast variation of order milliseconds in the time profile is then a natural expectation, given the other observed GRB parameters. Analytic calculations are presented to show that the escape of non-thermal, energetic gamma rays can emerge within a second of the thermal photons from a gammasphere of below 101210^{12} cm. The minimum asymptotic bulk Lorentz factor in this model is found to be of order several hundred if the photosphere is of order 3×10113 \times 10^{11} cm and greater for larger or smaller photospheric radii. It is suggested that prompt UHE gamma rays might provide a new constraint on the asymptotic Lorentz factor of the outflow.Comment: To appear in ApJ, revisions requested by the refere

    Shading and Smothering of Gamma Ray Bursts

    Get PDF
    The gamma ray burst (GRB) 980425 is distinctive in that it seems to be associated with supernova (SN) 1998bw, has no X-ray afterglow, and has a single peak light curve and a soft spectrum. The supernova is itself unusual in that its expansion velocity exceeds c/6. We suggest that many of these features can be accounted for with the hypothesis that we observe the GRB along a penumbral line of sight that contains mainly photons that have scattered off ejected baryons. The hypothesis suggests a baryon poor jet (BPJ) existing within a baryon rich outflow. The sharp distinction can be attributed to whether or not the magnetic field lines thread an event horizon. Such a configuration suggests that there will be some non-thermal acceleration of pick-up ex-neutrons within the BPJ. This scenario might produce observable spallation products and neutrinos.Comment: 7 pages, 2 figures, submitted to ApJ

    Probing Micro-quasars with TeV Neutrinos

    Get PDF
    The jets associated with Galactic micro-quasars are believed to be ejected by accreting stellar mass black-holes or neutron stars. We show that if the energy content of the jets in the transient sources is dominated by electron-proton plasma, then a several hour outburst of 1--100 TeV neutrinos produced by photo- meson interactions should precede the radio flares associated with major ejection events. Several neutrinos may be detected during a single outburst by a 1km^2 detector, thereby providing a powerful probe of micro-quasars jet physics.Comment: Accepted to PRL. More detailed discussion of particle acceleratio

    On the jets associated with galactic superluminal sources

    Get PDF
    Recent observations of GRS 1915+105 and GRO J1655+40 reveal superluminal motions in Galactic sources. This letter examines the physical conditions within these Galactic sources, their interaction with their environment, their possible formation, and contrasts them with their extragalactic counterparts. In particular, e^{+}-e^{-} and e-p jets are contrasted, constraints on particle acceleration in the jets are imposed using X-ray and radio observations, the \gamma-ray flux from e^+-e^- jets expected at EGRET energies and the flux in infrared lines from an e-p jet are estimated. It is also suggested that these sources may exhibit low frequency radio lobes extending up to several hundred parsecs in size, strong, soft X-ray absorption during the birth of the radio components and emission line strengths anti-correlated with the X-ray flux. The implications for other X-ray transients are briefly discussed

    Relativistic Photon Mediated Shocks

    Full text link
    A system of equations governing the structure of a steady, relativistic radiation dominated shock is derived, starting from the general form of the transfer equation obeyed by the photon distribution function. Closure is obtained by truncating the system of moment equations at some order. The anisotropy of the photon distribution function inside the shock is shown to increase with increasing shock velocity, approaching nearly perfect beaming at upstream Lorentz factors Γ>>1\Gamma_{-}>>1. Solutions of the shock equations are presented for some range of upstream conditions. These solutions are shown to converge as the truncation order is increased.Comment: 5 pages, a shorter version will appear in PR

    Diffuse emission in the presence of inhomogeneous spin-orbit interaction for the purpose of spin filtration

    Full text link
    A lateral interface connecting two regions with different strengths of the Bychkov-Rashba spin-orbit interaction can be used as a spin polarizer of electrons in two dimensional semiconductor heterostructures. [Khodas \emph{et al.}, Phys. Rev. Lett. \textbf{92}, 086602 (2004)]. In this paper we consider the case when one of the two regions is ballistic, while the other one is diffusive. We generalize the technique developed for the solution of the problem of the diffuse emission to the case of the spin dependent scattering at the interface, and determine the distribution of electrons emitted from the diffusive region. It is shown that the diffuse emission is an effective way to get electrons propagating at small angles to the interface that are most appropriate for the spin filtration and a subsequent spin manipulation. Finally, a scheme is proposed of a spin filter device, see Fig. 9, that creates two almost fully spin-polarized beams of electrons.Comment: 11 pages, 9 figure
    corecore