9,469 research outputs found

    Irradiated asymmetric Friedmann branes

    Full text link
    We consider a Friedmann brane moving in a bulk impregnated by radiation. The setup is strongly asymmetric, with only one black hole in the bulk. The radiation emitted by this bulk black hole can be reflected, absorbed or transmitted through the brane. Radiation pressure accelerates the brane, behaving as dark energy. Absorption however generates a competing effect: the brane becomes heavier and gravitational attraction increases. We analyse the model numerically, assuming a total absorbtion on the brane for k=1. We conclude that due to the two competing effects, in this asymmetric scenario the Hawking radiation from the bulk black hole is not able to change the recollapsing fate of this brane-world universe. We show that for light branes and early times the radiation pressure is the dominant effect. In contrast, for heavy branes the self-gravity of the absorbed radiation is a much stronger effect. We find the critical value of the initial energy density for which these two effects roughly cancel each other.Comment: 27 pages, 12 figure

    Heuristic bidding strategies for multiple heterogeneous auctions

    No full text
    This paper investigates utility maximising bidding heuristics for agents that participate in multiple heterogeneous auctions, in which the auction format and the starting and closing times can be different. Our strategy allows an agent to procure one or more items and to participate in any number of auctions. For this case, forming an optimal bidding strategy by global utility maximisation is computationally intractable, and so we develop two-stage heuristics that first provide reasonable bidding thresholds with simple strategies before deciding which auctions to participate in. The proposed approach leads to an average gain of at least 24% in agent utility over commonly used benchmarks

    Evolutionary stability of behavioural types in the continuous double auction

    No full text
    In this paper, we investigate the effectiveness of different types of bidding behaviour for trading agents in the Continuous Double Auction (CDA). Specifically, we consider behavioural types that are neutral (expected profit maximising), passive (targeting a higher profit than neutral) and aggressive (trading off profit for a better chance of transacting). For these types, we employ an evolutionary game-theoretic analysis to determine the population dynamics of agents that use them in different types of environments, including dynamic ones with market shocks. From this analysis, we find that given a symmetric demand and supply, agents are most likely to adopt neutral behaviour in static environments, while there tends to be more passive than neutral agents in dynamic ones. Furthermore, when we have asymmetric demand and supply, agents invariably adopt passive behaviour in both static and dynamic environments, though the gain in so doing is considerably smaller than in the symmetric case

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    On the General Linear Recurrence Relation

    Full text link

    Balanced trade reduction for dual-role exchange markets

    No full text
    We consider dual-role exchange markets, where traders can offer to both buy and sell the same commodity in the exchange but, if they transact, they can only be either a buyer or a seller, which is determined by the market mechanism. To design desirable mechanisms for such exchanges, we show that existing solutions may not be incentive compatible, and more importantly, cause the market maker to suffer a significant deficit. Hence, to combat this problem, following McAfee's trade reduction approach, we propose a new trade reduction mechanism, called balanced trade reduction, that is incentive compatible and also provides flexible trade-offs between efficiency and defici
    • 

    corecore