1,772 research outputs found

    Variable stars in one open cluster within the Kepler/K2-Campaign-5 field: M 67 (NGC 2682)

    Full text link
    In this paper we continue the release of high-level data products from the multiyear photometric survey collected at the 67/92 cm Schmidt Telescope in Asiago. The primary goal of the survey is to discover and to characterise variable objects and exoplanetary transits in four fields containing five nearby open clusters spanning a broad range of ages. This second paper releases a photometric catalogue, in five photometric bands, of the Solar-age, Solar-metallicity open cluster M 67 (NGC 2682). Proper motions are derived comparing the positions observed in 2013 at the Asiago's Schmidt Telescope with those extracted from [email protected] MPG/ESO images in 2000. We also analyse the variable sources within M 67. We detected 68 variables, 43 of which are new detection. Variable periods and proper-motion memberships of a large majority of sources in our catalogue are improved with respect to previous releases. The entire catalogue will be available in electronic format. Besides the general interest on an improved catalogue, this work will be particularly useful because of: (1) the imminent release of Kepler/K2 Campaign-5 data of this cluster, for which our catalogue will provide an excellent, high spatial resolution input list, and (2) characterisation of the M 67 stars which are targets of intense HARPS and HARPS-N radial-velocity surveys for planet search.Comment: 8 pages, 6 figures (2 at low resolution), 2 tables. Accepted for publication in MNRAS on October 17, 2015. Electronic materials available at the url http://groups.dfa.unipd.it/ESPG/M67.html , and later on the Journal and at the CD

    Acoustic Emission from a Growing Crack

    Get PDF
    Separation of crack growth signals is of fundamental importance for detecting, locating, and determining the significance of an internal flaw. The difficulty associated with modeling acoustic emission is not only in providing an accurate representation of the source mechanism, but also in determining the effect of the specimen geometry and the sensor on the acoustic emission signal

    The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. XIII. ACS/WFC Parallel-Field Catalogues

    Get PDF
    As part of the Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters, 110 parallel fields were observed with the Wide Field Channel of the Advanced Camera for Surveys, in the outskirts of 48 globular clusters, plus the open cluster NGC 6791. Totalling about 0.30.3 square degrees of observed sky, this is the largest homogeneous Hubble Space Telescope photometric survey of Galalctic globular clusters outskirts to date. In particular, two distinct pointings have been obtained for each target on average, all centred at about 6.56.5 arcmin from the cluster centre, thus covering a mean area of about 23arcmin223\,{\rm arcmin^{2}} for each globular cluster. For each field, at least one exposure in both F475W and F814W filters was collected. In this work, we publicly release the astrometric and photometric catalogues and the astrometrised atlases for each of these fields.Comment: 30 pages, 23 figures. Accepted by MNRA

    High-fidelity simulations of CdTe vapor deposition from a new bond-order potential-based molecular dynamics method

    Full text link
    CdTe has been a special semiconductor for constructing the lowest-cost solar cells and the CdTe-based Cd1-xZnxTe alloy has been the leading semiconductor for radiation detection applications. The performance currently achieved for the materials, however, is still far below the theoretical expectations. This is because the property-limiting nanoscale defects that are easily formed during the growth of CdTe crystals are difficult to explore in experiments. Here we demonstrate the capability of a bond order potential-based molecular dynamics method for predicting the crystalline growth of CdTe films during vapor deposition simulations. Such a method may begin to enable defects generated during vapor deposition of CdTe crystals to be accurately explored

    Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update

    Get PDF
    This article provides an overview of radiofrequency ablation (RFA) and microwave ablation (MWA) for treatment of primary liver tumors and hepatic metastasis. Only studies reporting RFA and MWA safety and efficacy on liver were retained. We found 40 clinical studies that satisfied the inclusion criteria. RFA has become an established treatment modality because of its efficacy, reproducibility, low complication rates, and availability. MWA has several advantages over RFA, which may make it more attractive to treat hepatic tumors. According to the literature, the overall survival, local recurrence, complication rates, disease-free survival, and mortality in patients with hepatocellular carcinoma (HCC) treated with RFA vary between 53.2 \ub1 3.0 months and 66 months, between 59.8% and 63.1%, between 2% and 10.5%, between 22.0 \ub1 2.6 months and 39 months, and between 0% and 1.2%, respectively. According to the literature, overall survival, local recurrence, complication rates, disease-free survival, and mortality in patients with HCC treated with MWA (compared with RFA) vary between 22 months for focal lesion >3 cm (vs. 21 months) and 50 months for focal lesion 643 cm (vs. 27 months), between 5% (vs. 46.6%) and 17.8% (vs. 18.2%), between 2.2% (vs. 0%) and 61.5% (vs. 45.4%), between 14 months (vs. 10.5 months) and 22 months (vs. no data reported), and between 0% (vs. 0%) and 15% (vs. 36%), respectively. According to the literature, the overall survival, local recurrence, complication rates, and mortality in liver metastases patients treated with RFA (vs. MWA) are not statistically different for both the survival times from primary tumor diagnosis and survival times from ablation, between 10% (vs. 6%) and 35.7% (vs. 39.6), between 1.1% (vs. 3.1%) and 24% (vs. 27%), and between 0% (vs. 0%) and 2% (vs. 0.3%). MWA should be considered the technique of choice in selected patients, when the tumor is 653 cm in diameter or is close to large vessels, independent of its size. Implications for Practice: Although technical features of the radiofrequency ablation (RFA) and microwave ablation (MWA) are similar, the differences arise from the physical phenomenon used to generate heat. RFA has become an established treatment modality because of its efficacy, reproducibility, low complication rates, and availability. MWA has several advantages over RFA, which may make it more attractive than RFA to treat hepatic tumors. The benefits of MWA are an improved convection profile, higher constant intratumoral temperatures, faster ablation times, and the ability to use multiple probes to treat multiple lesions simultaneously. MWA should be considered the technique of choice when the tumor is 653 cm in diameter or is close to large vessels, independent of its size

    Self-aligned nanoscale SQUID on a tip

    Get PDF
    A nanometer-sized superconducting quantum interference device (nanoSQUID) is fabricated on the apex of a sharp quartz tip and integrated into a scanning SQUID microscope. A simple self-aligned fabrication method results in nanoSQUIDs with diameters down to 100 nm with no lithographic processing. An aluminum nanoSQUID with an effective area of 0.034 μ\mum2^2 displays flux sensitivity of 1.8106\cdot 10^{-6} Φ0/Hz1/2andoperatesinfieldsashighas0.6T.Withprojectedspinsensitivityof65\Phi_0/\mathrm{Hz}^{1/2} and operates in fields as high as 0.6 T. With projected spin sensitivity of 65 \mu_B/\mathrm{Hz}^{1/2}$ and high bandwidth, the SQUID on a tip is a highly promising probe for nanoscale magnetic imaging and spectroscopy.Comment: 14 manuscript pages, 5 figure

    On the complexity of color-avoiding site and bond percolation

    Full text link
    The mathematical analysis of robustness and error-tolerance of complex networks has been in the center of research interest. On the other hand, little work has been done when the attack-tolerance of the vertices or edges are not independent but certain classes of vertices or edges share a mutual vulnerability. In this study, we consider a graph and we assign colors to the vertices or edges, where the color-classes correspond to the shared vulnerabilities. An important problem is to find robustly connected vertex sets: nodes that remain connected to each other by paths providing any type of error (i.e. erasing any vertices or edges of the given color). This is also known as color-avoiding percolation. In this paper, we study various possible modeling approaches of shared vulnerabilities, we analyze the computational complexity of finding the robustly (color-avoiding) connected components. We find that the presented approaches differ significantly regarding their complexity.Comment: 14 page

    Persistent and Coupling Current Effects in the LHC Superconducting Dipoles

    Get PDF
    One of the main issues for the operation of the LHC accelerator at CERN is the field errors generated by persistent and coupling currents in the main dipoles at injection conditions, i.e., 0.54 T dipole field. For this reason we are conducting systematic magnetic field measurements to quantify the above effects and compare them to the expected values from measurement on strands and cables. We discuss the results in terms of DC effects from persistent current magnetization, AC effects with short time constant from strand and cable coupling currents, and long-term decay during constant current excitation. Average and spread of the measured field errors over the population of magnets tested are as expected or smaller. Field decay at injection, and subsequent snap-back, show for the moment the largest variation from magnet to magnet, with weak correlation to parameters that can be controlled during production. For this reason these effects are likely to result in the largest spread of field errors over the whole dipole production
    corecore