15,739 research outputs found

    Characterizing the Hofstadter butterfly's outline with Chern numbers

    Full text link
    In this work, we report original properties inherent to independent particles subjected to a magnetic field by emphasizing the existence of regular structures in the energy spectrum's outline. We show that this fractal curve, the well-known Hofstadter butterfly's outline, is associated to a specific sequence of Chern numbers that correspond to the quantized transverse conductivity. Indeed the topological invariant that characterizes the fundamental energy band depicts successive stairways as the magnetic flux varies. Moreover each stairway is shown to be labeled by another Chern number which measures the charge transported under displacement of the periodic potential. We put forward the universal character of these properties by comparing the results obtained for the square and the honeycomb geometries.Comment: Accepted for publication in J. Phys. B (Jan 2009

    Flight Flutter Testing of the P6M

    Get PDF
    On the P6M the shake behavior, i.e., the response to random excitation at subcritical speeds of lowly damped airplane modes, is as important as the actual flutter speed. The approach is to first study the problem by means of analyses and wind-tunnel tests. These predictions are compared with flight test data obtained by spectral analysis of tape recordings of the airplane vibration responses to random aerodynamic turbulence. A similar spectrum analysis approach was used in high speed wind-tunnel tests. A resonance excitation technique was developed for low speed wind-tunnel testing, and well defined V-g curves were obtained. The effect of various parameters on both shake and flutter of T-tails with and without dihedral were studied. Preliminary flight tests yielded good correlation; they also yielded interesting information concerning a low frequency transonic snaking mode, and excitation by shed vortices

    On the Frequency of Potential Venus Analogs from Kepler Data

    Full text link
    The field of exoplanetary science has seen a dramatic improvement in sensitivity to terrestrial planets over recent years. Such discoveries have been a key feature of results from the {\it Kepler} mission which utilizes the transit method to determine the size of the planet. These discoveries have resulted in a corresponding interest in the topic of the Habitable Zone (HZ) and the search for potential Earth analogs. Within the Solar System, there is a clear dichotomy between Venus and Earth in terms of atmospheric evolution, likely the result of the large difference (∼\sim factor of two) in incident flux from the Sun. Since Venus is 95\% of the Earth's radius in size, it is impossible to distinguish between these two planets based only on size. In this paper we discuss planetary insolation in the context of atmospheric erosion and runaway greenhouse limits for planets similar to Venus. We define a ``Venus Zone'' (VZ) in which the planet is more likely to be a Venus analog rather than an Earth analog. We identify 43 potential Venus analogs with an occurrence rate (\eta_{\venus}) of 0.32−0.07+0.050.32^{+0.05}_{-0.07} and 0.45−0.09+0.060.45^{+0.06}_{-0.09} for M dwarfs and GK dwarfs respectively.Comment: 6 pages, 3 figures, 2 tables. Accepted for publication in the Astrophysical Journal Letters. More information and graphics can be found at the Habitable Zone Gallery (http://hzgallery.org

    Evaluation of the cardiovascular system during various circulatory stresses Progress report, 1 Sep. 1968 - 1 May 1969

    Get PDF
    Cardiac response to chemotherapy after myocardial infraction and diagnostic methods of heart disease in man and animal

    Possible Implications of Asymmetric Fermionic Dark Matter for Neutron Stars

    Get PDF
    We consider the implications of fermionic asymmetric dark matter for a "mixed neutron star" composed of ordinary baryons and dark fermions. We find examples, where for a certain range of dark fermion mass -- when it is less than that of ordinary baryons -- such systems can reach higher masses than the maximal values allowed for ordinary ("pure") neutron stars. This is shown both within a simplified, heuristic Newtonian analytic framework with non-interacting particles and via a general relativistic numerical calculation, under certain assumptions for the dark matter equation of state. Our work applies to various dark fermion models such as mirror matter models and to other models where the dark fermions have self interactions.Comment: 20 pages, 6 figure

    Supporting Pluralism by Artificial Intelligence: Conceptualizing Epistemic Disagreements as Digital Artifacts

    Get PDF
    A crucial concept in philosophy and social sciences, epistemic disagreement, has not yet been adequately reflected in the Web. In this paper, we call for development of intelligent tools dealing with epistemic disagreements on the Web to support pluralism. As a first step, we present Polyphony, an ontology for representing and annotating epistemic disagreements

    Charmed Mesons Have No Discernable Color-Coulomb Attraction

    Full text link
    Starting with a confining linear Lorentz scalar potential V_s and a Lorentz vector potential V_v which is also linear but has in addition a color-Coulomb attraction piece, -alpha_s/r, we solve the Dirac equation for the ground-state c- and u-quark wave functions. Then, convolving V_v with the u-quark density, we find that the Coulomb attraction mostly disappears, making an essentially linear barV_v for the c-quark. A similar convolution using the c-quark density also leads to an essentially linear tildeV_v for the u-quark. For bound cbar-c charmonia, where one must solve using a reduced mass for the c-quarks, we also find an essentially linear widehatV_v. Thus, the relativistic quark model describes how the charmed-meson mass spectrum avoids the need for a color-Coulomb attraction.Comment: 9 pages, 5 PDF figure

    A scoping review characterising the activities and landscape around implementing NICE guidance

    Get PDF
    Clinical, public health and social care guidance provide evidence-based recommendations on how professionals and commissioners working within these fields should care for patients, service users and the wider public. Evidence-based clinical guidance aims to reduce variation in practice and improve levels of patient and service user care, while at the same time allowing clinical freedom for individual practitioners. The guidance produced by the National Institute for Health and Care Excellence (NICE) are not mandatory, although NICE does set out a business case in terms of the clinical and cost-effectiveness for implementation. Implementation in this sense signifies the active planned processes that take place to enable guidance-based best practice to become routinely embedded within day-to-day activity. There is growing recognition that getting evidence to influence and change practice is a complex undertaking. Despite a growth in the evidence base in this area, there remain gaps in understanding which types of implementation strategies are most effective for which types of guidance, for which audiences and in which circumstances. This review sought to investigate the strategies used to implement NICE guidance in routine practice, and particularly to examine the impact of implementation strategies operationalised by national level organisations and networks

    Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    Full text link
    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in Inx_{x}Ga1−x_{1-x}As epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to qualitatively agree with the experimental results.Comment: 16 pages, 8 figure
    • …
    corecore