3,005 research outputs found

    Black hole collisions from Brill-Lindquist initial data: predictions of perturbation theory

    Get PDF
    The Misner initial value solution for two momentarily stationary black holes has been the focus of much numerical study. We report here analytic results for an astrophysically similar initial solution, that of Brill and Lindquist (BL). Results are given from perturbation theory for initially close holes and are compared with available numerical results. A comparison is made of the radiation generated from the BL and the Misner initial values, and the physical meaning is discussed.Comment: 11 pages, revtex3.0, 5 figure

    Properties of spin-triplet, even-parity superconductors

    Full text link
    The physical consequences of the spin-triplet, even-parity pairing that has been predicted to exist in disordered two-dimensional electron systems are considered in detail. We show that the presence of an attractive interaction in the particle-particle spin-triplet channel leads to an instability of the normal metal that competes with the localizing effects of the disorder. The instability is characterized by a diverging length scale, and has all of the characteristics of a continuous phase transition. The transition and the properties of the ordered phase are studied in mean-field theory, and by taking into account Gaussian fluctuations. We find that the ordered phase is indeed a superconductor with an ordinary Meissner effect and a free energy that is lower than that of the normal metal. Various technical points that have given rise to confusion in connection with this and other manifestations of odd-gap superconductivity are also discussed.Comment: 15 pp., REVTeX, psfig, 2 ps figs, final version as publishe

    Head-on collision of unequal mass black holes: close-limit predictions

    Full text link
    The close-limit method has given approximations in excellent agreement with those of numerical relativity for collisions of equal mass black holes. We consider here colliding holes with unequal mass, for which numerical relativity results are not available. We try to ask two questions: (i) Can we get approximate answers to astrophysical questions (ideal mass ratio for energy production, maximum recoil velocity, etc.), and (ii) can we better understand the limitations of approximation methods. There is some success in answering the first type of question, but more with the second, especially in connection with the issue of measures of the intrinsic mass of the colliding holes, and of the range of validity of the method.Comment: 19 pages, RevTeX + 9 postscript figure

    Statistical properties of a localization-delocalization transition induced by correlated disorder

    Full text link
    The exact probability distributions of the resistance, the conductance and the transmission are calculated for the one-dimensional Anderson model with long-range correlated off-diagonal disorder at E=0. It is proved that despite of the Anderson transition in 3D, the functional form of the resistance (and its related variables) distribution function does not change when there exists a Metal-Insulator transition induced by correlation between disorders. Furthermore, we derive analytically all statistical moments of the resistance, the transmission and the Lyapunov Exponent. The growth rate of the average and typical resistance decreases when the Hurst exponent HH tends to its critical value (Hcr=1/2H_{cr}=1/2) from the insulating regime. In the metallic regime H1/2H\geq1/2, the distributions become independent of size. Therefore, the resistance and the transmission fluctuations do not diverge with system size in the thermodynamic limit

    An exact solution for 2+1 dimensional critical collapse

    Get PDF
    We find an exact solution in closed form for the critical collapse of a scalar field with cosmological constant in 2+1 dimensions. This solution agrees with the numerical simulation done by Pretorius and Choptuik of this system.Comment: 5 pages, 5 figures, Revtex. New comparison of analytic and numerical solutions beyond the past light cone of the singularity added. Two new references added. Error in equation (21) correcte

    The Evolution of Distorted Rotating Black Holes II: Dynamics and Analysis

    Full text link
    We have developed a numerical code to study the evolution of distorted, rotating black holes. This code is used to evolve a new family of black hole initial data sets corresponding to distorted ``Kerr'' holes with a wide range of rotation parameters, and distorted Schwarzschild black holes with odd-parity radiation. Rotating black holes with rotation parameters as high as a/m=0.87a/m=0.87 are evolved and analyzed in this paper. The evolutions are generally carried out to about t=100Mt=100M, where MM is the ADM mass. We have extracted both the even- and odd-parity gravitational waveforms, and find the quasinormal modes of the holes to be excited in all cases. We also track the apparent horizons of the black holes, and find them to be a useful tool for interpreting the numerical results. We are able to compute the masses of the black holes from the measurements of their apparent horizons, as well as the total energy radiated and find their sum to be in excellent agreement with the ADM mass.Comment: 26 pages, LaTeX with RevTeX 3.0 macros. 27 uuencoded gz-compressed postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Submitted to Physical Review
    corecore