46 research outputs found

    Structural holes, innovation and the distribution of ideas

    Get PDF
    We model knowledge diffusion in a population of agents situated on a network, interacting only over direct ties. Some agents are by nature traders, others are by nature "givers": traders demand a quid pro quo for information transfer; givers do not. We are interested in efficiency of diffusion and explore the interplay between the structure of the population (proportion of traders), the network structure (clustering, path length and degree distribution), and the scarcity of knowledge. We find that at the global level, trading (as opposed to giving) reduces efficiency. At the individual level, highly connected agents do well when knowledge is scarce, agents in clustered neighbourhoods do well when it is abundant. The latter finding is connected to the debate on structural holes and social capital

    Network structure and the diffusion of knowledge

    Get PDF

    Networks as emergent structures from bilateral collaboration

    Get PDF
    In this paper we model the formation of innovation networks as they emerge from bilateral actions. The e.ectiveness of a bilateral collaboration is determined by cognitive, relational and structural embeddedness. Innovation results from the recombination of knowledge held by the partners to the collaboration, and the extent to which agents ’ knowledge complement each others is an issue of cognitive embeddedness. Previous collaborations (relational embeddedness) increase the probability of a successful collaboration; as does information gained from common third parties (structural embeddedness). As a result of repeated alliance formation, a network emerges whose properties are studied, together with those of the process of knowledge creation. Two features are central to the innovation process: how agents pool their knowledge resources; and how agents derive information about potential partners. We focus on the interplay between these two dimensions, and find that they both matter. The networks that emerge are not random, but in certain parts of the parameter space have properties of small worlds

    Evolving networks of inventors

    Get PDF

    Peer influence in network markets: a theoretical and empirical analysis

    Get PDF
    Network externalities spur the growth of networks and the adoption of network goods in two ways. First, they make it more attractive to join a network the larger its installed base. Second, they create incentives for network members to actively recruit new members. Despite indications that the latter "peer effect" can be more important for network growth than the installed-base effect, it has so far been largely ignored in the literature. We address this gap using game-theoretical models. When all early adopters can band together to exert peer influence-an assumption that fits, e.g., the case of firms supporting a technical standard-we find that the peer effect induces additional growth of the network by a factor. When, in contrast, individuals exert peer influence in small groups of size n, the increase in network size is by an additive constant-which, for small networks, can amount to a large relative increase. The difference between small, local, personal networks and large, global, anonymous networks arises endogenously from our analysis. Fundamentally, the first type of networks is "tie-reinforcing," the other, "tie-creating". We use survey data from users of the Internet services, Skype and eBay, to illustrate the main logic of our theoretical results. As predicted by the model, we find that the peer effect matters strongly for the network of Skype users-which effectively consists of numerous small sub-networks-but not for that of eBay users. Since many network goods give rise to small, local networks

    Preface

    No full text

    Social sorting

    Get PDF

    Merit, approbation and the evolution of social structure

    Get PDF
    corecore