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Network Structure and the Diffusion
of Knowledge*

Robin Cowan and Nicolas Jonard

MERIT
PO Box 616, 6200 MD Maastricht, The Netherlands

July 29, 1999

Abstract

This paper models knowledge diffusion as a barter process in which
agents trade different types of knowledge. It captures the observed
practice of informal knowledge exchange among agents with related,
though different knowledge. Agents are located on a lattice and are di-
rectly connected with a small number of other agents. Agents repeat-
edly meet those with whom they have direct connections and trade
if mutually profitable trades exist. In this way knowledge diffuses
throughout the economy. We examine the relationship between lat-
tice structure and diffusion performance. A one dimensional, periodic
lattice has as one extreme a completely regular structure—every agent
is connected to n nearest neighbours. At the other extreme every agent
is connected to, on average, n agents located at random on the lattice.
We use a re-wiring procedure to examine the space of lattice structures
that fall between these extremes. We find that the performance of the
system exhibits clear ‘small world’ properties, in that the steady state
level of average knowledge is maximal when the lattice structure is
that of a small world (that is, when most connections are local, but
roughly 5 percent of the connections are long distance). A surprising
result is that the variance of knowledge levels among agents is also
maximal in the small world region. We explain both these results as
reflecting the dynamics of knowledge transmission as affected by the
nature of connections among agents.

*We thank participants of seminars and conferences in Marseille (GREQAM),
Maastricht, Munich and Genova, as well as T. Ziesemer, J.-B. Zimmermann,
S. Luchini and A. Kirman for helpful comments.  Authors E-mail adresses are
racowan@mud.cgl.uwaterloo.ca and n. jonard@merit.unimaas.nl.



1 Introduction

One of the remarkable features of a market is its ability to process infor-
mation. Even with all of the myriad factors that can influence economic
phenomena, in principle, in a well-functioning market economy, agents need
only pay attention to one piece of information for each good, namely its
price. An implication of this feature of markets is that, to the extent that
agents interact with each other, interactions are anonymous. Any interac-
tion between two agents is mediated by the market, and I need know nothing
about you except the price you are charging or asking, which, in equilibrium,
will be the same as that charged or asked by every other agent.! Recently
however, some economists have been examining phenomena in which interac-
tions are not anonymous. Agents differ from each other in significant ways.
In particular, any agent only interacts with a small subset of the set of all
agents. This set may have different general characteristics from the popu-
lation average—different locations, endowments, technologies or tastes. The
particular characteristics of an agent’s ‘neighbours’ will clearly influence the
behaviour and welfare of the agent. Non-anonymity becomes important.

While economists understand that, and in an abstract sense how, a market
processes information, there is little explicit examination of it. In particu-
lar, in this tradition there is no mention of the network or communication
structures under which agents operate and transmit or exchange knowledge
and information. By contrast, in the literature on interacting agents, com-
munication structures play a central role. The details of who is connected
to whom affects what type of information is passed, how much, and how
efficiently. All of these can have an effect on the aggregate performance of
the system being modelled.

Observing both the empirical importance of communication network struc-
tures, and the theoretical result that key to the behavior of the models have
been the information transmission structures imposed on them, two questions
immediately arise: first, if the network structure is exogenous, precisely how
do the structural properties of the network affect aggregate outcomes ? and
second, if network formation is endogenous, what structures are likely to
emerge 7 The current paper makes some progress in answering the first of
these questions, namely how the communication network structure affects
the aggregate performance of the system.?

This paper addresses explicitly the nature of the social communication
network and its effect on the aggregate performance of the system. We

IThis is of course an extreme characterization of standard economic models, but
nonetheless represents a significant part of the economics literature.
2See Bala and Goyal (1998) or Plouraboue et al. (1998) e.g. on the second question.



take as the motivating application a system of knowledge diffusion. In our
model knowledge diffuses through barter exchange among pairs of agents.
Aggregate performance is measured as the mean knowledge level over all
agents. The parameter we vary is the degree of spatial randomness in the
links between agents through which knowledge can pass. At one extreme
we have an entirely local network—every agent is connected to his n nearest
neighbours. At the other extreme agents are connected randomly to, on
average, n other agents, located anywhere. We examine the space of network
structures between these extremes. In terms of the aggregate performance of
the system, one region of the space stands out. This region corresponds to the
“small world” network structure as defined formally by Watts and Strogatz
(1998), and informally by Granovetter (1973). We discuss this below.

While the body of literature on interacting agents uses different inter-
action structures to model the network through which agents communicate,
attention to their effects has been limited. Two extreme structures are com-
mon. At one extreme, in generalized Ising models all interactions are lo-
cal and the structure of the interactions completely regular. Every agent
is directly connected to the same small number of his nearest neighbours.
Neighborhoods tend to be small but the intersection of the neighborhood of
two nearby agents is relatively large. Put in other words, the structure is
very ‘cliquish’ in the sense that most of my neighbours are neighbours of
each other. On the other hand, though, the average path length between two
agents is relatively large. This structure has been used to examine macro-
economic dynamics (Durlauf, 1991 and 1993); technology diffusion (Allen,
1982; An and Kiefer, 1993; David et al. 1998); the effectiveness of prices
in stabilizing an economy (Follmer, 1974); criminal behaviour (Glaeser et
al., 1996). Clustering in behaviour is a common result: in steady states
we observe neighbourhoods in which agents’ behaviour is similar to that of
other agents in the neighbourhood, but different from that of agents in other
neighbourhoods.?

At the other extreme of interaction or network structures are models
based on random graph theory. Here, in principle every agent could be
connected to every other, and there is no spatial structure imposed on the
connections. Thus interactions are global in one of two senses. In some
models a mean field approximation is used, in which agents are assumed to
be affected by the average behaviour of the population. Alternatively, in
some models connections are random, exhibiting no spatial order, and links
are thus global in the sense that any agent could in principle be connected to
any other, regardless of location. Here, the structure is not at all cliquish, on

3 A recent survey on these and related topics can be found in Kirman (1998).



average my ‘neighbours’—those agents to whom I am directly connected—
have nothing to do with each other but average path lengths are short because
any long-distance link can serve as a ‘short-cut’ between agents. This general
structure of global or non-ordered connections has been used to examine
coalition formation (Kirman, 1983; Ioannides, 1990); innovation diffusion
(Plouraboue et al., 1998).

A common way to address structural influence is to vary the network
by changing the number of connections per agent. Results in percolation
theory can be interpreted this way: increasing either the link probability or
the node probability effectively increases the number of links, on average,
that are activated. It is now well-known that aggregate performance (for
example extent of diffusion of an innovation) undergoes a phase change as the
structure changes along this dimension. (See for example David et al., 1998).
In virtually all of the work that explicitly addresses the relationship between
network structure and aggregate performance, though, the emphasis has been
on the density of the connections, rather than on their spatial structure.* The
focus in this paper, by contrast, is specifically on the spatial structure of the
connections, and we deliberately hold the number of connections constant
throughout our analysis.

2 Knowledge

The production and diffusion of knowledge has long been viewed as a vital
component of economic growth. Empirical growth accounting studies, work
on national systems of innovation, and endogenous growth models all make
this point in different ways. In this line, taking knowledge accumulation
as being associated with technological change, there has been a significant
amount of empirical, econometric research on the diffusion of specific tech-
nological innovations. But we know that this is not the only form that
knowledge accumulation takes. Learning by doing (Arrow, 1962) and learn-
ing by using (Rosenberg, 1982) are perhaps the best examples of knowledge
accumulation that is not associated with new technologies. The existence of
learning curves, which describe progress within a technology, indicates some
sort, of knowledge accumulation that does not fit the “new technology” de-
scription. The kind of learning associated with learning curves is often not

*One exception is Midgley et al. (1992) who have a model with spatial characteristics—
agents are located in cliques, within an industry, or outside the industry. Again they find
that increasing the number of connections in the model increases diffusion speeds, though
different types of connections (intra-clique; inter-clique; outside the industry) have different
effects.



codified (Cowan and Foray, 1997), and thus is only transmitted in face to
face interactions. If knowledge generated by learning by using and doing is
diffused, therefore, models of its diffusion must take explicit account of the
structure of connections between agents. The position that some knowledge
is diffused only through face-to-face interactions is consistent with the work
of Jaffe et al. (1993) on patent citation, in which patent citation is shown
to be a geographically localized phenomenon.® There are several possible
explanations for this, but one is that there is some knowledge that is not
being globally diffused.

While not denying the importance of other kinds of knowledge and modes
of diffusion, in this paper we focus on this particular kind of knowledge—
knowledge that is exchanged in face-to-face communications. In-depth empir-
ical studies indicate that there is a well-established informal network through
which knowledge is traded (von Hippel, 1987; Hicks, 1995; Schrader, 1991).
Even among competitors knowledge is exchanged, but in a barter arrange-
ment. Conferences, publications and conversations in the bar are all situa-
tions in which agents give up information they have generated. It is this kind
of knowledge trading and the network structure in which it takes place that
we model in the next section.

3 The model

The model we design explores how the topology of agent interactions in-
fluences aggregate regularities. It is one in which agents are characterized
by knowledge endowments that evolve over time through a simple process
of barter exchange. This model is particularly well-suited for representing
knowledge ‘trading’ and diffusion among heterogenous agents. Note that
since agents trade knowledge, models in which knowledge is treated as a
scalar cannot capture an important aspect of knowledge diffusion. In con-
trast to most other models here knowledge is represented as a vector (we can
think of this as accounting for several distinct types of knowledge).

Agents exist on a graph, connected with a relatively small number of other
agents. Whenever two agents (i and j) meet, that is if a connection between
them is activated, they trade knowledge. Trades are only possible, though,
if ¢ has superior knowledge of one type while j has superior knowledge of
another type. In the model links are activated sequentially and randomly, so
that agents are acting in a changing world. Agents ¢ and j meet and make all
possible trades, but before they meet again, j may have met k, traded, and

For similar evidence see for example Prevezer and Swann, 1996; Feldman, 1994.



in doing so have created more possible trades with ¢. It should be clear that
we are not concerned with radical innovations, and particularly not product
innovations; the model captures effects of incremental innovations.

3.1 The interaction structure and the rewiring of con-
nections

We consider a population of agents endowed with a network structure. The
undirected graph associated with this network is written G (I,T"), where I =
{1,..., N} is the set of agents and the correspondence I' = {T'(i),i € I}
gives the list of vertices to which each vertex is connected. Formally T (i) =
{jeI\{i}|d(@i,j) =1}, where d(i,j) is the length of the shortest path
from vertex ¢ to vertex j. Only agents separated by one edge can interact.

3.1.1 Randomly ‘rewired’ graphs

A random graph is usually a graph in which there is either (i) a given prob-
ability (usually uniform) associated to the existence of an edge between any
pair of vertices (cf. Kirman, 1983) or (4i) a given number of connections to be
allocated according to a particular procedure among randomly chosen pairs of
vertices (Ioannides, 1990). In either case, the correspondence I' is randomly
constructed, the tuning parameter being (i) the probability of observing an
edge between two randomly chosen vertices or (ii) the total number of edges.
The family of graphs we consider here belongs to this second category, but
exhibits richer features. It contains a constant number n - N/2 of edges, but
in general these edges are not uniformly allocated among random pairs of
vertices. We start with vertices arrayed on a circle with each vertex being
only connected to its n nearest neighbors (n is even), and progressively dis-
rupt this local order by randomly rewiring the edges. The tuning parameter
is the probability p € [0, 1] of any link being rewired. Graphs that belong to
this family are labelled G (I, n, p) . Figure 1 depicts three example graphs for
N =16 and n = 4.

A re-wiring algorithm allows us to examine networks that are intermediate
between regular, locally ordered, and totally random.® We begin with a
completely regular graph: a circular lattice with N vertices, each vertex
having edges only to its n nearest neighbours (n is even). We operate on each
edge of the vertex sequentially, but in a particular order. Begin with vertex
one, and the edge connecting it to its nearest neighbour clockwise. With

This is the procedure used in Watts and Strogatz (1998), but our results would hold
for a broader class of rewiring procedures.
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Figure 1: The transition from a locally ordered structure to a random one
and the small world phenomenon for G(I,n,p) graphs.

probability p break the connection to the neighbour and re-connect that edge
to a vertex chosen uniform randomly over the entire lattice. With probability
1 — p, leave the edge unchanged. Progress around the lattice clockwise,
considering one edge per vertex, and dis-allowing duplicate edges. After
one complete round, repeat the procedure, considering the second nearest
clockwise neighbour. Simply repeat the process, considering progressively
more distant neighbours, until every edge has been considered once. By
tuning the parameter p, we can vary the graph structure from completely
regular (p = 0), through intermediate states, (0 < p < 1), to completely
random (p = 1). This procedure creates variation in the number of edges per
agent, but maintains an average of n connections per agent.

Figure 1 depicts three illustrative configurations with increasing disorder
as p is increased, for N = 16 and n = 4. For small but non-zero values of p,
the graph is highly clustered like a regular graph but has the low average path
length of an almost-random graph. Hence, despite the fact that the number
of edges is kept constant throughout the experiment (there are exactly n-N/2
edges whatever p), tuning p exerts a crucial influence on the relational density
of the interaction structure as well as the length of the path between any pair
of vertices.



3.1.2 Structural properties

Watts and Strogatz (1998) point out that the structural properties of G (I, n, p)
graphs are intuitively captured by the concepts of average path length and

average cliquishness. If one thinks of social networks representing friendship,

both have intuitive interpretations. The path length is the number of friend-

ships in the shortest chain connecting two agents. Cliquishness reflects the

extent to which friends of one agent are also friends of each other. Formally,

defining d (i, 7) as the length of the shortest path between i and j, the average

path length £ (p) is

ZZ (1)

zEI ];ﬁz

and simply measures how distant vertices are on average, which is a global
property of the graph.” By contrast, average cliquishness C (p) is a measure
of local connectivity in that it captures the share of active links between a
given vertex’s neighbors.8 It is written

X ()
3L T TOreD R @

ZEI Js lEF(z)

where X (j,1) = 1if j € T'(l) and X (j,1) = 0 otherwise. When p = 0
and N is large enough, C(0) = 3/4-(n—2)/(n—1) and £(0) ~ N/(2n)
Conversely, £(1) ~ InN/Inn and C (1) ~ n/N for large N. One might
conjecture that large cliquishness is always associated with large path length
and low cliquishness with low path length. Actually, as emphasized by Watts
and Strogatz (1998), there is a non-negligible interval for p over which £ (p) ~
L (1) yet C(p) > C(1). This interval constitutes the ‘small world’ region
(see figures 1 and 2). It follows from the fact that introducing a long range
edge provides a shortcut not only between the two vertices that this link
connects, but also for their immediate neighbours, the neighbours of those
neighbours and so on. Thus when the number of long distance links is small
their marginal effect on average path length is large. The existence of the
small world region is a generic property of large sparse connected networks,
Watts and Strogatz claim. The evolution of path length and clique size with
p is depicted on figure 2, for a graph of N = 500 vertices, each vertex having
on average n = 10 nearest neighbours. For the sake of clarity, we plot the

normalized values £ (p) /£ (0) and C (p) /C (0).

"Note that an alternative measure would have been the diameter of the graph, i.e. the
maximal path length over the graph.
8In graph theory, a clique is a set of vertices, any two of which are adjacent.
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Figure 2: Average cliquishness and average path length as functions of p

The upper curve (thin black) on figure 2 is the normalized average cliquish-
ness index C (p) /C (0) for p € [0, 1] . It remains almost constant when p is rea-
sonably small and falls slowly for large values of p. By contrast, average path
length (thick grey) as measured by £ (p) /L (0) falls quickly for very small
p values and flattens out near 0.01. Hence we see that for p € [0.005,0.1],
clique size and path length diverge, creating a small world region in the space
of network structures.

3.2 Knowledge interaction

Fach agent is characterized by a knowledge vector that evolves over time
through a barter exchange. Formally, let V; (¢) = (Vi (t);k = 1,..., K) de-
note agent i’s knowledge endowment at time ¢. Agents 7 and j might interact
provided j € T' (i) (equivalently ¢ € I'(j) since the graph is non-directed) and
if trading is mutually advantageous. Let n (i,7) = [{k | Vix (t) > Vjx (t)}| be
the number of knowledge categories in which ¢ strictly dominates j, for any
(i,7) € I*. Then clearly trade can take place if and only if

Condition 3 states that there should be some double coincidence of wants.
An agent whose knowledge endowment totally dominates his counterpart’s
endowment has little to learn from the latter, hence little to gain from the



interaction. In that case barter simply does not take place. By contrast,
as soon as equation 3 holds, trade is engaged and all possible trades are
exhausted. Each agent gives and receives some knowledge in a number of
knowledge categories equal to min{n (i, j) ,n (j,7)}. We have assumed that
knowledge is only partly assimilable,” hence trading, when it occurs, re-
sults in a gain equal to a share a of the knowledge differential. Formally,
category k knowledge spills over from the more wealthy agent according to
Vik(t+1) =V, (t)+a-(Vir (t) — Vik (t)) . Note that ‘trade’ here is a barter
—one agent transfers part of his knowledge to another one and is paid back
with knowledge of a different category. As long as there is one category in
which agent ¢ dominates agent j and one in which j dominates ¢, both agents
perceive trade as mutually advantageous, even if observation from an absolute
point of view would suggest that one has less to gain that the other. A rule
is necessary to solve cases in which equation (3) holds but n (i,7) # n (j,1).
In that particular case, it is simply assumed that the categories involved in
trading are randomly chosen, with uniform probability.’

We add one more feature to the system we have just described, namely
the presence of ‘experts’. There are a small number of agents who, initially,
have much better information or knowledge than the population average.
For each category of knowledge, there is a small number of experts, and the
diffusion and absorption of that expertise is subject of the experiments in
the next section.

4 Simulation results

We are interested in evaluating the efficiency, also sometimes referred to as
‘distribution power’, of the system (David and Foray, 1995) as it responds to
the structural properties of the graph. We look, therefore, at knowledge level.
Agent i’s average knowledge level is Tz; (t) = >4 Vik (t) /K. The average level

9The strictly partial assimilation arises from the fact that tacit knowledge is needed to
assimilate and use fully any piece of information (cf. Cowan and Foray, 1997). Further, the
value of a piece of information lies in great part in its integration with other information, so
typically it is not possible simply to ‘add’ a piece of information to an existing information
structure. Put another way, absorptive capacity is never perfect (Cohen and Levinthal,
1990). Note also that with o < 1 the model has the property that knowledge ‘degrades’ as
it is transmitted. Thus, the longer the path a piece of information travels, the less value
it is to the recipient.
10 As a particular example, if V; (t) = (5,6,3,5,2) and V; () = (8,2,2,9,2), four types of
knowledge are exchanged (n (¢,j) = n(j,i) = 2 ) and assuming a = 0.5 yields V; (t + 1) =
(6.5,6,3,7,2) and V; (t +1) = (8,4,2.5,9,2).



of knowledge in the economy at time  is
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and the standard deviation in knowledge allocation is
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In order to collect data on distribution power, we consider here a knowledge
exchange economy with a population of N = 500 agents and n = 10 links per
agents (hence a total number of 2500 edges). Each agent is endowed with
a H-category knowledge vector that is randomly initialized by giving each
category a uniformly drawn value between 0 and 10. Parameter «, which
accounts for the ease with which new knowledge is assimilated and integrated
to the existing knowledge stock of an agent (and could well represent the
extent to which knowledge is codified in the particular economy we consider)
is set to 0.5. Hence, an agent is only able successfully to integrate fifty percent
of the knowledge differential that exists between him and his counterpart each
time this pair meets."! A large number of meetings is considered (T = 50000)
so as to ensure that each link (each edge of the graph) is activated frequently
enough (this gives an average of 20 activations per link). The share of actual
experts in the population is kept low (25 experts hence 5% of the whole
population) and these are endowed, in one knowledge category for each, with
a component equal to 30.

Each meeting consists in picking at random an agent in I and (randomly)
activating one of his links (choosing an edge emanating from him), letting
then all possible trades take place.'?

To isolate the small world phenomenon, the rewiring probability p is var-
ied from 0.001 to 1 by adding increments that allow us to represent results on
a logarithmic axis. For each p value, forty replications are run and averaged
to provide statistically significant evidence on the aggregate behavior of the
system.

4.1 Small worlds and knowledge distribution

The expression ‘strength of weak ties’ coined by Granovetter to mark the
crucial importance of indirect relationships in collective phenomena led to the

Hlncreasing o changes the speed of the process but leaves the qualitative results un-
changed (provided it remains strictly less than one).

12Not every meeting will result in trades—one member of the meeting pair may dominate
the other in all knowledge categories.

10



acknowledgment of the fact that ‘the world is actually a small world’. This
property, that Watts and Strogatz (1998) formally identify as the conjunction
of a short average path length and a high degree of cliquishness, is clearly a
property of the structure and not of agents’ particular modes of interaction.
Thus it may not resist certain modes of interaction or, put another way, there
may be no ‘isomorphism’ between the properties of the structure and that of
the interactions it conveys. One might reasonably conjecture that decreasing
path length is invariably associated with faster and wider diffusion. This is
certainly true, but it should be kept in mind that the particular structure we
employ here is one in which the number of links to be allocated among agents
is kept constant. Hence a vertex that is ‘missing’ between two adjacent nodes,
or equivalently a communication link that is broken between adjacent agents,
harms the local efficiency of diffusion, thereby reducing the probability of
seeing geographical clusters of ‘high-knowledge’ agents emerge. This suggests
that path length and clique size act in opposite directions, cliquishness being
a source of high redundancy and fast diffusion at the local level, while path
length indicates how easily novelty can be obtained from distant parts of the
economy. While this may be less important for the short run properties of
the diffusion process, it makes a significant difference in the long run.
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Figure 3: The economy-wide average knowledge level as a function of the
rewiring probability p

Figure 3 depicts how varying p affects the long-run performance of the

11



economy in terms of knowledge diffusion. The long-run average level of
knowledge 7 (T) is clearly a non-monotonic function of p, with a sharp effi-
ciency peak in the small world region. As seen in figure 2, the small world
region (wherein clique size is relatively large but path length is relatively
short) lies roughly between p = 0.005 and p = 0.1. As measured by average
knowledge levels, this system performs best at p = 0.06. Hence the small
world structural property has a dynamic counterpart in the knowledge ex-
change economy that we consider. A clear implication of this is that the
average path length or the diameter of a network of relationships is not an
unequivocal measure of the ‘distribution power’ of this structure. Dimin-
ishing the distance between members of an organization by reallocating the
links is far from being a sufficient measure, since how these links are allocated
also matters.

4.2 Small worlds and heterogeneity

Examining inter-agent heterogeneity in the steady state provides further in-
sights into the workings of our economy.
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Figure 4: Agent heterogeneity

Figure 4 shows the evolution of the long-run variance o (T) of knowledge
within the system as a function of the rewiring probability p. Surprisingly
heterogeneity and efficiency respond in a similar manner to changes in p.
Again a single-peaked curve obtains, the small world region corresponding

12



to the highest level of disparities in terms of knowledge allocation. Hence
there is a region in which the structural properties of the network of agents’
relationships is at the same time producing the best overall performance in
terms of how much knowledge diffuses through the system, and the worse
overall performance when homogeneity of the allocation is considered. The
conclusions one draws from this will depend, of course, on whether efficiency
or equity of knowledge diffusion is considered more important.

A tentative explanation to this apparent paradox might be advanced here.
With zero or very small p, the network is extremely dense at the local level,
with strong redundancy implying fast access to locally available knowledge,
but slow access to more distant one. There will be two types of regions on the
graph: those without local experts, where knowledge diffuses homogeneously
but remains at a relatively low level; those with local experts, where expertise
creates a knowledge cluster. There will be a relatively small number of the
latter but they will achieve, within the cluster, higher levels of knowledge.
In a small world, though, agents with direct connections to experts relatively
rapidly become experts themselves, thus forming new (possibly distant) high-
knowledge clusters. The high cliquishness of the small world ensures that
agents near experts reinforce their knowledge levels. This keeps them dis-
tinct from regions that are not closely connected to experts. The small world
conditions are such that there is at the same time an (almost) intact local
redundancy but an increased number of areas in the economy where expert
knowledge becomes available. This effect continues to the point when fur-
ther increasing the share of long distance links implies that accessing expert
knowledge has almost no local effects since no local order exists anymore.
The peak in the variance of knowledge endowments therefore results from
the multiplication of access points to expert knowledge, while at the same
time keeping local interrelated clusters with homogenous levels of knowledge.

4.3 Small worlds and diffusion dynamics

To this point, our analysis has focussed on long-run properties. We now
turn attention to the transitory properties of the model. The speed at which
knowledge diffuses is also a major policy concern and we can use the model
to examine how this is affected by network architecture. Figure 5 depicts the
time series of the average knowledge level for three characteristic values of
the rewiring probability p.

The lowest p-value (0.007) is located in the regular (locally ordered) net-
work zone, in which diffusion is locally efficient though there are only a small
number of access points to expert knowledge. Obviously the economy-wide
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Figure 5: Diffusion time path

diffusion of information is sluggish and only dwindling pieces of knowledge
are exchanged as time passes. The highest p-value (0.7), by contrast, belongs
to an area where many long-distance vertices coexist with a small number
of short-range links. In this region, sizable informational ‘jumps’ are accom-
plished during a large number of meetings before trading possibilities become
exhausted. Finally, the small world region shows its distributional superior
strength but figure 5 also reveals that its dominance takes time to emerge.
If short-run distribution properties are considered important, structures in
which the average path length is as short as possible definitely dominate.

4.4 On Clique Size

The results presented indicate that the behaviour of our knowledge diffu-
sion system change as the degree of randomness of the network architecture
changes. The architectural changes of the network have been encapsulated
in two structural parameters, namely average path length and cliquishness.
The effect of average path lengths is relatively obvious, intuitively—a short
path can only increase the diffusion power of the system; knowledge will
move to different parts of the graph more quickly. But what effect does
clique size have? A cliquish graph has the property of local redundancy.'?

13Young (1998, chapter 6), in a model of games played on graphs, explores the impor-
tance of network structure in the diffusion of particular strategies. He uses the concepts
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What this implies is that if agents ¢ and j are in the same clique, there are
many paths by which knowledge can pass between them. This turns out to
be important in this model due to the imperative of the double coincidence
of wants. If ¢ has knowledge that would benefit j but there is a failure of
the double coincidence of wants between ¢ and j, there are many other pos-
sible paths along which the knowledge can be transmitted. This implies a
certain role for the clique structure. In a relatively cliquish graph, an agent
should have knowledge that is very similar to that of the agents with whom
he is connected. In a non-cliquish graph, an agent will, in general, have
knowledge that is relatively dis-similar to that held by those to whom he is
directly connected. In the latter case, there will be knowledge held by one
agent which would be of value to an agent directly connected to him which
cannot be transmitted. Speaking loosely, “potentially beneficial transfers”
are not made. Since transfers only increase average knowledge, the effect of
reduced cliquishness is to reduce average knowledge levels. This is illustrated
in Figure 6 which shows average knowledge dis-similarity as a function of the
rewiring probability p.
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Figure 6: Agents dis-similarity

Here, knowledge dis-similarity refers to a global measure of how distant
any agent and his neighbours are. It is defined as the average over neigh-
bouring agents of pairwise distances in the knowledge space. In particular,

of ‘cohesiveness’ and ‘close-knittedness’ to characterize the geometry of the network.
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1’s dis-similarity index is

1

1
D)= = 5 — 3 |Vis — Visl,

where V; ;; is the level of knowledge of type k held by agent i. Index D (7)
equals 0 whenever ¢ and all his neighbours are identical and increases as they
become increasingly dissembling. We plot the average over agents.'*

5 Discussion and Conclusions

In this paper we have modelled one of the processes by which knowledge is
diffused. As more and more policy makers come to be concerned with the so-
called knowledge economy, this diffusion becomes a central policy issue. We
have shown that the extent of diffusion is clearly affected by the structure
of the network over which the diffusion takes place, and that there is an
identifiable region of the space of structures in which the diffusion is much
more complete than elsewhere in the space. This “small world” region exists
where the proportion of long distance, as opposed to short distance links is
between 5 and 10 percent of all direct links between agent pairs.

Technology and knowledge policy, especially in Europe, is currently going
through a phase (one might be tempted to say craze) in which clustering and
localization is seen as an extremely important phenomenon. Policy makers
are very keen to find policies which will encourage clustering, and create new
“Silicon Valleys” in new places and different industries. This craze is based
on the belief that the knowledge transmission mechanisms modelled here are
extremely important in any innovation system. Our results indicate, though,
that this policy goal must be treated with some circumspection; it is possible
to have too much clustering. It is very important to maintain or even build
strong links outside the cluster.

Our results also raise a problem for any policy maker involved in regional
technology or knowledge policy. This is the very old efficiency/equity trade-
off. In the region of the space of network structures in which diffusion results
in a high average knowledge level, it also results in a high variance among
agents. That is, the distribution of knowledge levels is relatively unequal.
To the extent that distribution remains a policy concern, if knowledge is

14This result is robust to the definition of dis-similarity. For example, defining dis-
similarity as 4+ >, le)l > jer) ® (Vik/Vik), where ® (x) = min{z,1/2}, we find again
a strong positive relationship between dissimilarity and p.
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considered a key input to wealth or income, policies aimed at inducing effi-
cient knowledge diffusion will have to address the consequent distribution of
income.

The model could be extended in several obvious ways. We have taken
the network structure as given, and have examined its effect on the knowl-
edge diffusion process. But clearly, networks evolve in response to agents’
experiences. Thus an agent who has had a very successful exchange with one
particular agent is likely to try to return to that agent in the future. By this
sort of mechanism the strengths of links between agents will change as they
gain experience with the network. Policy would be very interested in the
circumstances in which a network evolves into a small world network, with
the associated ‘nice’ properties.

In the model in this paper, there is in effect no innovation, only diffusion,
which we can interpret as the consequence of a single innovative episode. In
general, though, innovations happen continually. Including innovation intro-
duces a potentially complex feedback. Part of the rationale for technology
policy focussing on spatial clusters is that it is believed that within a cluster,
ideas meet and interact, producing an environment conducive to rapid cre-
ation of new ideas. Thus introducing ongoing innovation introduces another
trade-off—in a very cliquish graph, this sort of local interaction conducive to
idea creation will be significant. But our results show that highly cliquish
networks have poor diffusion properties. There is, therefore a new form of
the trade-off between production of innovations, which in general is a good
thing for wealth creation, and the diffusion of those ideas, which is a similarly
good thing.

The model as constructed is very general in its form and can be extended
and applied in a variety of ways. It shows again the value of being well-
connected, but also the value of having shortcuts available. Applying the
message to the scientific enterprise, we should specialize, but not be closed
to ideas that seem to come from very far afield.
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