404 research outputs found

    Observational constraints on the spectral index of the cosmological curvature perturbation

    Get PDF
    We evaluate the observational constraints on the spectral index nn, in the context of the Λ\LambdaCDM hypothesis which represents the simplest viable cosmology. We first take nn to be practically scale-independent. Ignoring reionization, we find at a nominal 2-σ\sigma level n≃1.0±0.1n\simeq 1.0 \pm 0.1. If we make the more realisitic assumption that reionization occurs when a fraction f∌10−5f\sim 10^{-5} to 1 of the matter has collapsed, the 2-σ\sigma lower bound is unchanged while the 1-σ\sigma bound rises slightly. These constraints are compared with the prediction of various inflation models. Then we investigate the two-parameter scale-dependent spectral index, predicted by running-mass inflation models, and find that present data allow significant scale-dependence of nn, which occurs in a physically reasonable regime of parameter space.Comment: ReVTeX, 15 pages, 5 figures and 3 tables, uses epsf.sty Improved treatment of reionization and small bug fixed in the constant n case; more convenient parameterization and better treatment of the n dependence in the CMB anisotropy for the running mass case; conclusions basically unchanged; references adde

    Possible Evidence For Axino Dark Matter In The Galactic Bulge

    Full text link
    Recently, the SPI spectrometer on the INTEGRAL satellite observed strong 511 keV line emission from the galactic bulge. Although the angular distribution (spherically symmetric with width of \sim 9 degree) of this emission is difficult to account for with traditional astrophysical scenarios, light dark matter particles could account for the observation. In this letter, we consider the possibility that decaying axinos in an R-parity violating model of supersymmetry may be the source of this emission. We find that \sim 1-300 MeV axinos with R-parity violating couplings can naturally produce the observed emission.Comment: 4 pages, 1 figure. Version accepted by Physical Review

    Leptogenesis with "Fuzzy Mass Shell" for Majorana Neutrinos

    Get PDF
    We study the mixing of elementary and composite particles. In quantum field theory the mixing of composite particles originates in the couplings of the constituent quarks and for neutrinos in self-energy diagrams. In the event that the incoming and outgoing neutrinos have different masses, the self-energy diagrams vanish because energy is not conserved but the finite decaying widths make the mixing possible. We can consider the neutrinos to be "fuzzy" states on their mass shell and the mixing is understood as the overlap of two wavefunctions. These considerations restrict the mass difference to be approximately equal to or smaller than the largest of the two widths: abs(M_i - M_j) lessorequal max(Gamma_i, Gamma_j).Comment: 11 pages, 1 figur

    Running-mass models of inflation, and their observational constraints

    Get PDF
    If the inflaton sector is described by softly broken supersymmetry, and the inflaton has unsuppressed couplings, the inflaton mass will run strongly with scale. Four types of model are possible. The prediction for the spectral index involves two parameters, while the COBE normalization involves a third, all of them calculable functions of the relevant masses and couplings. A crude estimate is made of the region of parameter space allowed by present observation.Comment: Latex file, 20 pages, 11 figures, uses epsf.sty. Comment on the observation of the spectral index scale dependence added; Fig. 3-6 improve

    Particle Dark Matter - A Theorist's Perspective

    Full text link
    Dark matter is presumably made of some new, exotic particle that appears in extensions of the Standard Model. After giving a brief overview of some popular candidates, I discuss in more detail the most appealing case of the supersymmetric neutralino.Comment: Invited talk at PASCOS--03, Mumbai, Indi

    SUSY dark matter(s)

    Get PDF
    We review here the status of different dark matter candidates in the context of supersymmetric models, in particular the neutralino as a realization of the WIMP-mechanism and the gravitino. We give a summary of the recent bounds in direct and indirect detection and also of the LHC searches relevant for the dark matter question. We discuss also the implications of the Higgs discovery for the supersymmetric dark matter models and give the prospects for the future years.Comment: 16 pages, 3 figure

    Axino dark matter in brane world cosmology

    Full text link
    We discuss dark matter in the brane world scenario. We work in the Randall-Sundrum type II brane world and assume that the lightest supersymmetric particle is the axino. We find that the axinos can play the role of cold dark matter in the universe, provided that the five-dimensional Planck mass is bounded both from below and from above. This is possible for higher reheating temperatures compared to the conventional four-dimensional cosmology due to a novel expansion law for the universe.Comment: 1+11 pages, version submitted to JCA

    Tracking Quintessence and Cold Dark Matter Candidates

    Full text link
    We study the generation of a kination-dominated phase in the context of a quintessential model with an inverse-power-law potential and a Hubble-induced mass term for the quintessence field. The presence of kination is associated with an oscillating evolution of the quintessence field and the barotropic index. We find that, in sizeable regions of the parameter space, a tracker scaling solution can be reached sufficiently early to alleviate the coincidence problem. Other observational constraints originating from nucleosynthesis, the inflationary scale, the present acceleration of the universe and the dark-energy-density parameter can be also met. The impact of this modified kination-dominated phase on the thermal abundance of cold dark matter candidates is investigated too. We find that: (i) the enhancement of the relic abundance of the WIMPs with respect to the standard paradigm, crucially depends on the hierarchy between the freeze-out temperature and the temperature at which the extrema in the evolution of the quintessence field are encountered, and (ii) the relic abundance of e-WIMPs takes its present value close to the temperature at which the earliest extremum of the evolution of the quintessence field occurs and, as a consequence, both gravitinos and axinos arise as natural cold dark matter candidates. In the case of unstable gravitinos, the gravitino constraint can be satisfied for values of the initial temperature well above those required in the standard cosmology.Comment: Final versio

    Vanishing lung emphysema during chemotherapy for malignant pleural mesothelioma.

    Get PDF
    We report the case of a 79-year-old man with a tobacco smoke-related left dystrophic bullous emphysema that showed a considerable recovery of the cystic abnormalities during chemotherapy for pleural malignant mesothelioma. We suggest that the disappearance of the dystrophic emphysema could be explained by the combined effect of chemotherapy and pleural disease. We briefly review the literature and we discuss the possible mechanism of this unforeseen manifestation

    Probing the stability of superheavy dark matter particles with high-energy neutrinos

    Full text link
    Two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive in this paper lower limits on the lifetime of dark matter particles with masses in the range 10 TeV-10^15 TeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than O(10^26-10^28) s for masses between 10 TeV and the Grand Unification scale. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay.Comment: 17 pages, 6 figures; v2: references added, discussion improved, matches the version published at JCA
    • 

    corecore