86 research outputs found
Differences in thermal niche between coastal and inland populations of the yellow monkeyflower (Mimulus guttatus)
Climate change will have multiple important impacts on coastal plant communities, yet how coastal plants will respond to temperature increases is understudied. Coastal areas experience small fluctuations in temperature daily and annually, similar to lowland tropical environments where research has shown that some tropical organisms are extremely threatened by increases in temperature because their thermal environmental has, historically, been very stable. Using multiple approaches, we plan to study if coastal and inland populations of the plant Mimulus guttatus differ in the evolution of their thermal niches. Are coastal populations more sensitive to changes in temperature, have coastal populations been limited in their thermal niche evolution, and are coastal populations more vulnerable to climate change? To test these questions, we have compared the evolution of habitat and temperature seasonality on a phylogeny of populations across the range of M. guttatus. We plan to compare relative growth rate between coastal and inland populations under different temperature treatments in growth chambers to understand how thermal niche currently differs and predict how populations may fair under climate change
Wound dressing products: A translational investigation from the bench to the market
Chronic skin wounds affect more than 40 million patients globally and represent a severe growing burden for the healthcare systems, with annual costs expected to exceed $15 billions by 2022. To satisfy the huge demand for effective wound care products, different types of wound dressings have been introduced on the market during the last decades. Based on âthe moist wound healing theoryâ postulated by Prof Winter in 1962, bandages were initially designed to recreate the optimal wound environment to favor the healing process. Then, thanks to the advancements achieved in biomaterial design and processing, biotechnology, imaging and electronic fields, great effort has been devoted to the development of formulations able to actively participate to tissue healing. Indeed, both the literature and the market report the design of medicated wound dressings, i.e., wound care products releasing anti-microbial agents, anti-inflammatory drugs, or bioactive molecules. In this scenario, this review aims at critically describing the currently available wound care products, highlighting their proved effectiveness in wound management. Moreover, an overview of the main strategies exploited to design personalized wound dressings has been reported. Lastly, concerns on regulatory affairs and practical issues limiting the clinical translation of advanced research platforms have also been discussed
MicroRNA delivery through nanoparticles
MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine
Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation
A compost isolated humic acid-like (cHAL) material was pointed out in previous work for its potential as auxiliary in chemical technology. Its potential is based on its relatively low 0.4 g L-1 critical micellar concentration (cmc) in water, which enables cHAL to enhance the water solubility of hydrophobic substances, like phenanthrene, when used at higher concentrations than 0.4 g L-1. This material could be obtained from a 1:1 v/v mixture of municipal solid and lignocellulosic wastes composted for 15 days. The compost, containing 69.3% volatile solids, 39.6% total organic C and 21 C/N ratio, was extracted for 24 h at 65 °C under N2 with aqueous 0.1 mol L-1 NaOH and 0.1 mol L-1 Na4P2O7, and the solution was acidified to separate the precipitated cHAL in 12% yield from soluble carbohydrates and other humic and non-humic substances. In this work two typical applications of surfactants, i.e., textile dyeing (TD) and soil remediation by washing (SW), were chosen as grounds for testing the performance of the cHAL biosurfactant against the one of sodium dodecylsulfate (SDS), which is a well established commercial synthetic surfactant. The TD trials were carried out with nylon 6 microfiber and a water insoluble dye, while the SW tests were performed with two soils contaminated by polycyclic aromatic hydrocarbons (PAH) for several decades. Performances were rated in the TD experiments based on the fabric colour intensity (ÎE) and uniformity (ÏÎE), and in the SW experiments based on the total hydrocarbons concentration (CWPAH) and on the residual surfactant (Cre) concentrations in the washing solution equilibrated with the contaminated soils. The results show that both cHAL and SDS exhibit enhanced performance when applied above their cmc values. However, while in the TD case a significant performance effect was observed at the surfactants cmc value, in the SW case the required surfactants concentration values were equivalent to 25-125 Ă cmc for cHAL and to 4-22 Ă cmc for SDS. The vis-a-vis comparison of the two surfactants gave the following results: in the TD case the cHAL biosurfactant at 0.4 g L-1 yields good colour intensity and equal colour uniformity as SDS at 5 g L-1, in the SW case cHAL was found to enhance CWPAH by a factor of 2-4 relative to SDS with one soil, whereas with the other soil the two surfactants behaved similarly. The Cre data, however, showed that both soils absorbed by far more SDS (68-95%) than cHAL (12-54%). The results point out intriguing technological and environmental perspectives deriving from the use of compost isolated biosurfactants in the place of synthetic surfactants
Spider Silk Constructs Enhance Axonal Regeneration and Remyelination in Long Nerve Defects in Sheep
BACKGROUND: Surgical reapposition of peripheral nerve results in some axonal regeneration and functional recovery, but the clinical outcome in long distance nerve defects is disappointing and research continues to utilize further interventional approaches to optimize functional recovery. We describe the use of nerve constructs consisting of decellularized vein grafts filled with spider silk fibers as a guiding material to bridge a 6.0 cm tibial nerve defect in adult sheep. METHODOLOGY/PRINCIPAL FINDINGS: The nerve constructs were compared to autologous nerve grafts. Regeneration was evaluated for clinical, electrophysiological and histological outcome. Electrophysiological recordings were obtained at 6 months and 10 months post surgery in each group. Ten months later, the nerves were removed and prepared for immunostaining, electrophysiological and electron microscopy. Immunostaining for sodium channel (NaV 1.6) was used to define nodes of Ranvier on regenerated axons in combination with anti-S100 and neurofilament. Anti-S100 was used to identify Schwann cells. Axons regenerated through the constructs and were myelinated indicating migration of Schwann cells into the constructs. Nodes of Ranvier between myelin segments were observed and identified by intense sodium channel (NaV 1.6) staining on the regenerated axons. There was no significant difference in electrophysiological results between control autologous experimental and construct implantation indicating that our construct are an effective alternative to autologous nerve transplantation. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that spider silk enhances Schwann cell migration, axonal regrowth and remyelination including electrophysiological recovery in a long-distance peripheral nerve gap model resulting in functional recovery. This improvement in nerve regeneration could have significant clinical implications for reconstructive nerve surgery
The Current Status and Work of Three Rs Centres and Platforms in Europe*
The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general
- âŠ